
Jia-Hua Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1035972/publications.pdf Version: 2024-02-01

Ιιλ-Ηιιλ Οιμ

#	Article	IF	CITATIONS
1	A regioselective synthesis of 7-methyl juglone and its derivatives. Natural Product Research, 2022, 36, 18-25.	1.8	4
2	Design, Synthesis and Binding Affinity Evaluation of Cytochrome P450 1B1 Targeted Chelators. Anti-Cancer Agents in Medicinal Chemistry, 2022, 22, 261-269.	1.7	5
3	Design, Synthesis and <i>In Vivo</i> Fluorescence Imaging Study of a Cytochrome P450 1B1 Targeted NIR Probe Containing a Chelator Moiety. ChemBioChem, 2022, 23, .	2.6	4
4	A highly sensitive electrochemical biosensor for Hg ²⁺ based on entropy-driven DNA walker-based amplification. Analytical Methods, 2022, 14, 2504-2510.	2.7	4
5	Discovery of heterocycle-containing α-naphthoflavone derivatives as water-soluble, highly potent and selective CYP1B1 inhibitors. European Journal of Medicinal Chemistry, 2021, 209, 112895.	5.5	21
6	Anticancer natural products with collateral sensitivity: a review. Mini-Reviews in Medicinal Chemistry, 2021, 21, 1465-1486.	2.4	1
7	Natural Products Targeting Cancer Stem Cells: A Revisit. Current Medicinal Chemistry, 2021, 28, 6773-6804.	2.4	4
8	Selective Antitumor Effect of Shikonin Derived DMAKO-20 on Melanoma through CYP1B1. Current Cancer Drug Targets, 2021, 21, 223-231.	1.6	3
9	Natural COX-2 Inhibitors as Promising Anti-inflammatory Agents: An Update. Current Medicinal Chemistry, 2021, 28, 3622-3646.	2.4	47
10	Discovery of juglone and its derivatives as potent SARS-CoV-2 main proteinase inhibitors. European Journal of Medicinal Chemistry, 2021, 225, 113789.	5.5	25
11	The Activation of Procarcinogens by CYP1A1/1B1 and Related Chemo-Preventive Agents: A Review. Current Cancer Drug Targets, 2021, 21, 21-54.	1.6	11
12	Flavonoid Monomers as Potent, Nontoxic, and Selective Modulators of the Breast Cancer Resistance Protein (ABCG2). Journal of Medicinal Chemistry, 2021, 64, 14311-14331.	6.4	11
13	Synthesis and structure-activity relationship studies of α-naphthoflavone derivatives as CYP1B1 inhibitors. European Journal of Medicinal Chemistry, 2020, 187, 111938.	5.5	24
14	Development of benzochalcone derivatives as selective CYP1B1 inhibitors and anticancer agents. MedChemComm, 2019, 10, 1606-1614.	3.4	19
15	Triazole Bridged Flavonoid Dimers as Potent, Nontoxic, and Highly Selective Breast Cancer Resistance Protein (BCRP/ABCG2) Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 8578-8608.	6.4	29
16	DMAKO-20 as a New Multitarget Anticancer Prodrug Activated by the Tumor Specific CYP1B1 Enzyme. Molecular Pharmaceutics, 2019, 16, 409-421.	4.6	18
17	Flavonoids as P-gp Inhibitors: A Systematic Review of SARs. Current Medicinal Chemistry, 2019, 26, 4799-4831.	2.4	22
18	Development of 2-arylbenzo[<i>h</i>]quinolone analogs as selective CYP1B1 inhibitors. RSC Advances, 2018, 8, 15009-15020.	3.6	10

JIA-HUA CUI

#	Article	IF	CITATIONS
19	Design, Synthesis, and Biological Evaluation of Cytochrome P450 1B1 Targeted Molecular Imaging Probes for Colorectal Tumor Detection. Journal of Medicinal Chemistry, 2018, 61, 10901-10909.	6.4	16
20	Cytotoxicity of Synthesized 1,4-Naphthoquinone Oxime Derivatives on Selected Human Cancer Cell Lines. Chemical and Pharmaceutical Bulletin, 2018, 66, 612-619.	1.3	14
21	Advance in Anti-tumor Mechanisms of Shikonin, Alkannin and their Derivatives. Mini-Reviews in Medicinal Chemistry, 2018, 18, 164-172.	2.4	53
22	The Chemistry and Biological Effects of Thioflavones. Mini-Reviews in Medicinal Chemistry, 2018, 18, 1714-1732.	2.4	25
23	Cerium (IV) ammonium nitrate (CAN)-mediated regioselective synthesis and anticancer activity of 6-substituted 5,8-dimethoxy-1,4-naphthoquinone. Chinese Chemical Letters, 2017, 28, 1553-1558.	9.0	11
24	Synthesis of 4,8-dimethoxy-1-naphthol via an acetyl migration. Synthetic Communications, 2017, 47, 536-540.	2.1	4
25	Shikonin Derivative <scp>DMAKO</scp> â€05 Inhibits Akt Signal Activation and Melanoma Proliferation. Chemical Biology and Drug Design, 2016, 87, 895-904.	3.2	20
26	Design, synthesis and anticancer activity of shikonin and alkannin derivatives with different substituents on the naphthazarin scaffold. Chemical Research in Chinese Universities, 2015, 31, 394-400.	2.6	11
27	Design and Synthesis of New α-Naphthoflavones as Cytochrome P450 (CYP) 1B1 Inhibitors To Overcome Docetaxel-Resistance Associated with CYP1B1 Overexpression. Journal of Medicinal Chemistry, 2015, 58, 3534-3547.	6.4	73
28	An Efficient Multigram Synthesis of Juglone Methyl Ether. Journal of Chemical Research, 2015, 39, 553-554.	1.3	2
29	Design, Synthesis, and Biological Evaluation of Shikonin and Alkannin Derivatives as Potential Anticancer Agents via a Prodrug Approach. ChemMedChem, 2014, 9, 2798-2808.	3.2	17
30	Inhibitors and Prodrugs Targeting CYP1: A Novel Approach in Cancer Prevention and Therapy. Current Medicinal Chemistry, 2014, 21, 519-552.	2.4	53
31	Design and synthesis of new 7,8-dimethoxy-α-naphthoflavones as CYP1A1 inhibitors. Chinese Chemical Letters, 2013, 24, 215-218.	9.0	9
32	An Efficient Synthesis of 5,6â€Dimethoxy 1―and 2â€Naphthols <i>via</i> Teuber Reaction. Journal of the Chinese Chemical Society, 2013, 60, 1163-1168.	1.4	7
33	Structure, Chemistry and Pharmacology of Naphthoflavones. Mini-Reviews in Medicinal Chemistry, 2013, 13, 1357-1368.	2.4	13
34	A Convenient and Efficient Synthesis of 2-Acetyl-5,8-Dimethoxy-1,4-Naphthoquinone. Journal of Chemical Research, 2012, 36, 264-265.	1.3	9
35	A Convenient and Efficient Synthesis of 2,6-Dihydroxynaphthalene. Journal of Chemical Research, 2012, 36, 675-677.	1.3	1
36	A novel and efficient total synthesis of shikonin. Tetrahedron Letters, 2012, 53, 3977-3980.	1.4	11