
Zuoqiang Hao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1035742/publications.pdf Version: 2024-02-01

Ζυσομλίς Ηλο

#	Article	IF	CITATIONS
1	Powerful supercontinuum vortices generated by femtosecond vortex beams with thin plates. Photonics Research, 2022, 10, 802.	7.0	10
2	Free control of filaments rotating induced by vortex femtosecond laser beams interference in fused silica. Optics and Laser Technology, 2022, 150, 107974.	4.6	3
3	Intense vector supercontinuum radiation from femtosecond filamentation. Optics Express, 2022, 30, 17567.	3.4	2
4	Elongation of filamentation and enhancement of supercontinuum generation by a preformed air density hole. Optics Express, 2022, 30, 16987.	3.4	5
5	Quantitative determination of Al–Cu–Mg–Fe–Ni aluminum alloy using laser-induced breakdown spectroscopy combined with LASSO–LSSVM regression. Journal of Analytical Atomic Spectrometry, 2021, 36, 1634-1642.	3.0	21
6	Helical filaments array generated by femtosecond vortex beams with lens array in air. Results in Physics, 2021, 26, 104334.	4.1	12
7	Spectral Hump Formation in Visible Region of Supercontinuum from Shaped Femtosecond Laser Filamentation in Fused Silica. Photonics, 2021, 8, 339.	2.0	2
8	High spectral energy density supercontinuum generation in fused silica by interfering two femtosecond laser beams. Journal of Optics (United Kingdom), 2019, 21, 065501.	2.2	3
9	Supercontinuum generation by femtosecond flat-top laser pulses in fused silica. Journal of the Optical Society of America B: Optical Physics, 2019, 36, G6.	2.1	7
10	Contributions of leading and tailing pulse edges to filamentation and supercontinuum generation of femtosecond pulses in air. Physics of Plasmas, 2018, 25, 103102.	1.9	10
11	Intense supercontinuum generation in the near-ultraviolet range from a 400-nm femtosecond laser filament array in fused silica. Chinese Physics B, 2017, 26, 074213.	1.4	2
12	Multiple refocusing of femtosecond filamentation in air: Experiment and simulation. Optik, 2017, 144, 70-75.	2.9	4
13	Influences of astigmatic focusing geometry on femtosecond filamentation and supercontinuum generation in fused silica. Optik, 2017, 130, 765-768.	2.9	6
14	Interference-induced filament array in fused silica. Optics Express, 2017, 25, 23910.	3.4	8
15	Supercontinuum accumulation along a single femtosecond filament in fused silica. Journal Physics D: Applied Physics, 2016, 49, 115201.	2.8	14
16	Femtosecond laser filamentation with a microlens array in air. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 163.	2.1	13
17	Spectroscopic determination of NO2, NO3, and O3 temporal evolution induced by femtosecond filamentation in air. Applied Physics Letters, 2015, 106, .	3.3	10
18	Femtosecond filament array generated in air. Applied Physics B: Lasers and Optics, 2015, 121, 363-368.	2.2	10

ZUOQIANG HAO

#	Article	IF	CITATIONS
19	High spectral power femtosecond supercontinuum source by use of microlens array. Optics Letters, 2014, 39, 747.	3.3	33
20	Filamentation of femtosecond laser pulses with spatial chirp in air. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 321.	2.1	12
21	Microwave guiding along double femtosecond filaments in air. Physical Review E, 2013, 88, 013104.	2.1	27
22	Modeling a femtosecond filament array waveguide for guiding pulsed infrared laser radiation. Optics Communications, 2013, 296, 87-94.	2.1	10
23	Control of laser filamentation in fused silica by a periodic microlens array. Optics Express, 2013, 21, 7908.	3.4	25
24	Triggering and guiding high-voltage discharge in air by single and multiple femtosecond filaments. Optics Letters, 2012, 37, 259.	3.3	26
25	Numerical analysis of guiding a microwave radiation using a set of plasma filaments: dielectric waveguide concept. Journal Physics D: Applied Physics, 2012, 45, 065102.	2.8	24
26	Analysis of microwave leaky modes propagating through laser plasma filaments column waveguide. Physics of Plasmas, 2012, 19, 123504.	1.9	9
27	Guiding microwave radiation using laser-induced filaments: the hollow conducting waveguide concept. Journal Physics D: Applied Physics, 2012, 45, 265401.	2.8	44
28	Formation of strong light-trapping nano- and microscale structures on a spherical metal surface by femtosecond laser filament. Applied Physics Letters, 2012, 100, .	3.3	28
29	Femtosecond laser filament-fringes in fused silica. Optics Express, 2011, 19, 7799.	3.4	27
30	Laser-induced water condensation in air. Nature Photonics, 2010, 4, 451-456.	31.4	179