Gail Chmura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1035380/publications.pdf

Version: 2024-02-01

91828 147726 6,644 75 31 citations h-index papers

g-index 78 78 78 6566 docs citations times ranked citing authors all docs

69

#	Article	IF	Citations
1	Spartina alterniflora has the highest methane emissions in a St. Lawrence estuary salt marsh. , 2022, 1, 011003.		2
2	Contribution of belowground plant components to salt marsh soil volume. Estuarine, Coastal and Shelf Science, 2022, 275, 107974.	0.9	1
3	Upland Migration of North American Salt Marshes. , 2021, , 423-442.		O
4	Natural climate solutions for Canada. Science Advances, 2021, 7, .	4.7	95
5	Tidal Marsh Sediment and Carbon Accretion on a Geomorphologically Dynamic Coastline. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006507.	1.3	3
6	Applying Airborne LiDAR to Map Salt Marsh Inland Boundaries. Remote Sensing, 2021, 13, 4245.	1.8	0
7	Photographic Monitoring of Blooming of Critical Salt Marsh Nectar Sources by Citizen Scientists. Northeastern Naturalist, 2021, 28, .	0.1	0
8	Invasive <i>Phragmites</i> Increases Blue Carbon Stock and Soil Volume in a St. Lawrence Estuary Marsh. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005473.	1.3	10
9	The Second Warning to Humanity – Providing a Context for Wetland Management and Policy. Wetlands, 2019, 39, 1-5.	0.7	67
10	The future of Blue Carbon science. Nature Communications, 2019, 10, 3998.	5. 8	406
11	Bringing climate scientist's tools into classrooms to improve conceptual understandings. Journal of Environmental Studies and Sciences, 2019, 9, 25-34.	0.9	0
12	Benthic microalgae offset the sediment carbon dioxide emission in subtropical mangrove in cold seasons. Limnology and Oceanography, 2019, 64, 1297-1308.	1.6	25
13	Wetlands In a Changing Climate: Science, Policy and Management. Wetlands, 2018, 38, 183-205.	0.7	234
14	Dinoflagellate Cysts Track Eutrophication in the Northern Gulf of Mexico. Estuaries and Coasts, 2018, 41, 1322-1336.	1.0	16
15	The Younger Dryas in palynological records from the northern Northwest Atlantic: Does the terrestrial record lag the marine and air records?. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 490, 269-279.	1.0	2
16	High resolution carbon stock and soil data for three salt marshes along the northeastern coast of North America. Data in Brief, 2018, 19, 2438-2441.	0.5	4
17	Nitrous oxide emissions could reduce the blue carbon value of marshes on eutrophic estuaries. Environmental Research Letters, 2018, 13, 044034.	2.2	20
18	Global-change effects on early-stage decomposition processes in tidal wetlands – implications from a global survey using standardized litter. Biogeosciences, 2018, 15, 3189-3202.	1.3	73

#	Article	IF	CITATIONS
19	The importance of geomorphic context for estimating the carbon stock of salt marshes. Geoderma, 2018, 330, 264-275.	2.3	28
20	The effect of global climate change on the future distribution of economically important macroalgae (seaweeds) in the northwest Atlantic. Facets, 2018, 3, 275-286.	1.1	22
21	Rapid carbon accumulation following managed realignment on the Bay of Fundy. PLoS ONE, 2018, 13, e0193930.	1.1	23
22	Greenhouse gas flux with reflooding of a drained salt marsh soil. PeerJ, 2018, 6, e5659.	0.9	8
23	Mangroves as a major source of soil carbon storage in adjacent seagrass meadows. Scientific Reports, 2017, 7, 42406.	1.6	60
24	Effect of nutrient pollution on dinoflagellate cyst assemblages across estuaries of the NW Atlantic. Marine Pollution Bulletin, 2017, 121, 339-351.	2.3	22
25	Melitasphaeridium choanophorum – a living fossil dinoflagellate cyst in the Gulf of Mexico. Palynology, 2017, 41, 351-358.	0.7	9
26	Greenhouse Gas Fluxes from Salt Marshes Exposed to Chronic Nutrient Enrichment. PLoS ONE, 2016, 11, e0149937.	1.1	43
27	Biogeography of dinoflagellate cysts in northwest Atlantic estuaries. Ecology and Evolution, 2016, 6, 5648-5662.	0.8	24
28	Impacts of Sea Level Rise on Marsh as Fish Habitat. Estuaries and Coasts, 2015, 38, 1288-1303.	1.0	25
29	Observations on Shallow Subsurface Hydrology at Bay of Fundy Macrotidal Salt Marshes. Journal of Coastal Research, 2014, 297, 1006-1016.	0.1	11
30	What do we need to assess the sustainability of the tidal salt marsh carbon sink?. Ocean and Coastal Management, 2013, 83, 25-31.	2.0	120
31	Future sea surface temperatures in Large Marine Ecosystems of the Northwest Atlantic. ICES Journal of Marine Science, 2013, 70, 915-921.	1.2	17
32	Assessing Coastal Squeeze of Tidal Wetlands. Journal of Coastal Research, 2013, 290, 1049-1061.	0.1	131
33	Potential Pitfalls of Pollen Dating. Radiocarbon, 2013, 55, 1142-1155.	0.8	22
34	Poleward Expansion of the White-Footed Mouse (Peromyscus leucopus) under Climate Change: Implications for the Spread of Lyme Disease. PLoS ONE, 2013, 8, e80724.	1.1	77
35	Potential Pitfalls of Pollen Dating. Radiocarbon, 2013, 55, .	0.8	4
36	The utility of Nymphaeaceae sclereids in paleoenvironmental research. Review of Palaeobotany and Palynology, 2012, 169, 29-37.	0.8	6

#	Article	IF	CITATIONS
37	Calibration of pollen assemblages and carbon–nitrogen ratios to discriminate boreal wetland types. Review of Palaeobotany and Palynology, 2012, 174, 48-56.	0.8	6
38	A high-resolution record of carbon accumulation rates during boreal peatland initiation. Biogeosciences, 2012, 9, 2711-2717.	1.3	7
39	Recovering Salt Marsh Ecosystem Services through Tidal Restoration. , 2012, , 233-251.		14
40	Spatial and Environmental Variability of Pools on a Natural and a Recovering Salt Marsh in the Bay of Fundy. Journal of Coastal Research, 2011, 276, 847-856.	0.1	5
41	A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO ₂ . Frontiers in Ecology and the Environment, 2011, 9, 552-560.	1.9	2,354
42	The greenhouse gas flux and potential global warming feedbacks of a northern macrotidal and microtidal salt marsh. Environmental Research Letters, 2011, 6, 044016.	2.2	49
43	The Legacy of Agricultural Reclamation on Channel and Pool Networks of Bay of Fundy Salt Marshes. Estuaries and Coasts, 2010, 33, 151-160.	1.0	23
44	A new Shoreline displacement model for the last 7 ka from eastern James Bay, Canada. Quaternary Research, 2010, 73, 474-484.	1.0	26
45	Reinterpretation of past sea-level variation of the Bay of Fundy. Holocene, 2010, 20, 7-11.	0.9	0
46	An Enigmatic Carbonate Layer in Everglades Tree Island Peats. Eos, 2008, 89, 117-118.	0.1	24
47	Reconciling models and measurements to assess trends in atmospheric mercury deposition. Environmental Pollution, 2008, 156, 526-535.	3.7	32
48	Metal accumulation in surface salt marsh sediments of the Bay of Fundy, Canada. Estuaries and Coasts, 2007, 30, 725-734.	1.0	18
49	Mercury accumulation in surface sediments of salt marshes of the Bay of Fundy. Environmental Pollution, 2006, 142, 418-431.	3.7	41
50	Development of modern analogues for natural, mowed and grazed grasslands using pollen assemblages and coprophilous fungi. Review of Palaeobotany and Palynology, 2006, 141, 139-149.	0.8	89
51	Non-pollen microfossils in Everglades sediments. Review of Palaeobotany and Palynology, 2006, 141, 103-119.	0.8	53
52	Response of three paleo-primary production proxy measures to development of an urban estuary. Science of the Total Environment, 2004, 320, 225-243.	3.9	29
53	Environmental factors influencing the spatial distribution of dinoflagellate cyst assemblages in shallow lagoons of southern New England (USA). Review of Palaeobotany and Palynology, 2004, 128, 7-34.	0.8	88
54	Controls on salt marsh accretion: A test in salt marshes of Eastern Canada. Estuaries and Coasts, 2004, 27, 70-81.	1.7	91

#	Article	IF	CITATIONS
55	Changes in saltmarsh surface elevation due to variability in evapotranspiration and tidal flooding. Estuaries and Coasts, 2004, 27, 82-89.	1.7	36
56	PollenÂ-vegetation relationships in Bay of Fundy salt marshes. Canadian Journal of Botany, 2004, 82, 663-670.	1.2	8
57	Environmental stress and recovery: the geochemical record of human disturbance in New Bedford Harbor and Apponagansett Bay, Massachusetts (USA). Science of the Total Environment, 2003, 313, 153-176.	3.9	34
58	Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 2003, 17, n/a-n/a.	1.9	1,168
59	Dinoflagellate cyst records and human disturbance in two neighboring estuaries, New Bedford Harbor and Apponagansett Bay, Massachusetts (USA). Science of the Total Environment, 2002, 298, 81-102.	3.9	105
60	Carbon accumulation in bay of fundy salt marshes: Implications for restoration of reclaimed marshes. Global Biogeochemical Cycles, 2001, 15, 943-954.	1.9	93
61	Historical rates of salt marsh accretion on the outer Bay of Fundy. Canadian Journal of Earth Sciences, 2001, 38, 1081-1092.	0.6	39
62	The history of mercury emissions from fuel combustion in Maritime Canada. Environmental Pollution, 2000, 110, 297-306.	3.7	23
63	An inventory of historical mercury emissions in Maritime Canada: implications for present and future contamination. Science of the Total Environment, 2000, 256, 39-57.	3.9	38
64	Pollen transport through distributaries and depositional patterns in coastal waters. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 149, 257-270.	1.0	57
65	Climatic Controls of the Middle Marsh Zone in the Bay of Fundy. Estuaries and Coasts, 1997, 20, 689.	1.7	34
66	Spatial distribution of suspended pollen in the Mississippi River as an example of pollen transport in alluvial channels. Review of Palaeobotany and Palynology, 1996, 92, 69-81.	0.8	25
67	Methane and Carbon Dioxide Flux from a Macrotidal Salt Marsh, Bay of Fundy, New Brunswick. Estuaries and Coasts, 1996, 19, 139.	1.7	120
68	Utility of microforaminifera test linings in palynological preparations. Palynology, 1995, 19, 77-84.	0.7	11
69	Pollen distribution in the Atchafalaya river, U.S.A Palynology, 1994, 18, 55-65.	0.7	11
70	Palynomorph distribution in marsh environments in the modern Mississippi Delta plain. Bulletin of the Geological Society of America, 1994, 106, 705.	1.6	22
71	Storm Deposition and 137Cs Accumulation in Fine-grained Marsh Sediments of the Mississippi Delta Plain. Estuarine, Coastal and Shelf Science, 1994, 39, 33-44.	0.9	23
72	Modelling coastal marsh stability in response to sea level rise: a case study in coastal Louisiana, USA. Ecological Modelling, 1992, 64, 47-64.	1.2	36

#	Article	IF	CITATIONS
73	Pollen in the lower Mississippi River. Review of Palaeobotany and Palynology, 1990, 64, 253-261.	0.8	50
74	Sedimentary and botanical factors influencing peat accumulation in the Mississippi Delta. Journal of the Geological Society, 1987, 144, 423-434.	0.9	67
75	An inventory of 13C abundances in coastal wetlands of Louisiana, USA: vegetation and sediments. Oecologia, 1987, 74, 264-271.	0.9	74