Myriam M-L Grundy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1035026/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Re-evaluation of the mechanisms of dietary fibre and implications for macronutrient bioaccessibility, digestion and postprandial metabolism. British Journal of Nutrition, 2016, 116, 816-833.	1.2	255
2	A standardised semi-dynamic <i>in vitro</i> digestion method suitable for food – an international consensus. Food and Function, 2020, 11, 1702-1720.	2.1	233
3	Manipulation of starch bioaccessibility in wheat endosperm to regulate starch digestion, postprandial glycemia, insulinemia, and gut hormone responses: a randomized controlled trial in healthy ileostomy participants. American Journal of Clinical Nutrition, 2015, 102, 791-800.	2.2	134
4	Effect of mastication on lipid bioaccessibility of almonds in a randomized human study and its implications for digestion kinetics, metabolizable energy, and postprandial lipemia. American Journal of Clinical Nutrition, 2015, 101, 25-33.	2.2	102
5	A review of the impact of processing on nutrient bioaccessibility and digestion of almonds. International Journal of Food Science and Technology, 2016, 51, 1937-1946.	1.3	98
6	Plant Cell Walls: Impact on Nutrient Bioaccessibility and Digestibility. Foods, 2020, 9, 201.	1.9	82
7	Processing of oat: the impact on oat's cholesterol lowering effect. Food and Function, 2018, 9, 1328-1343.	2.1	77
8	The effects of processing and mastication on almond lipid bioaccessibility using novel methods of <i>in vitro</i> digestion modelling and micro-structural analysis. British Journal of Nutrition, 2014, 112, 1521-1529.	1.2	73
9	The role of plant cell wall encapsulation and porosity in regulating lipolysis during the digestion of almond seeds. Food and Function, 2016, 7, 69-78.	2.1	70
10	Impact of cell wall encapsulation of almonds on in vitro duodenal lipolysis. Food Chemistry, 2015, 185, 405-412.	4.2	66
11	The impact of oat structure and β-glucan on in vitro lipid digestion. Journal of Functional Foods, 2017, 38, 378-388.	1.6	52
12	Influence of oat components on lipid digestion using an in vitro model: Impact of viscosity and depletion flocculation mechanism. Food Hydrocolloids, 2018, 83, 253-264.	5.6	46
13	Understanding the Effect of Particle Size and Processing on Almond Lipid Bioaccessibility through Microstructural Analysis: From Mastication to Faecal Collection. Nutrients, 2018, 10, 213.	1.7	36
14	In vitro and in vivo modeling of lipid bioaccessibility and digestion from almond muffins: The importance of the cell-wall barrier mechanism. Journal of Functional Foods, 2017, 37, 263-271.	1.6	33
15	Effects of grain source and processing methods on the nutritional profile and digestibility of grain amaranth. Journal of Functional Foods, 2020, 72, 104065.	1.6	31
16	Impact of hydrothermal and mechanical processing on dissolution kinetics and rheology of oat β-glucan. Carbohydrate Polymers, 2017, 166, 387-397.	5.1	28
17	Morphology of bile salts micelles and mixed micelles with lipolysis products, from scattering techniques and atomistic simulations. Journal of Colloid and Interface Science, 2021, 587, 522-537.	5.0	25
18	Molecular insights into the behaviour of bile salts at interfaces: a key to their role in lipid digestion. Journal of Colloid and Interface Science, 2019, 556, 266-277.	5.0	22

Myriam M-L Grundy

#	Article	IF	CITATIONS
19	INFOGEST inter-laboratory recommendations for assaying gastric and pancreatic lipases activities prior to in vitro digestion studies. Journal of Functional Foods, 2021, 82, 104497.	1.6	22
20	Oat and lipolysis: Food matrix effect. Food Chemistry, 2019, 278, 683-691.	4.2	20
21	Impact of extraneous proteins on the gastrointestinal fate of sunflower seed (Helianthus annuus) oil bodies: a simulated gastrointestinal tract study. Food and Function, 2015, 6, 124-133.	2.1	14
22	Interactions of bile salts with a dietary fibre, methylcellulose, and impact on lipolysis. Carbohydrate Polymers, 2020, 231, 115741.	5.1	9
23	Use of the Extended Fujita method for representing the molecular weight and molecular weight distributions of native and processed oat beta-glucans. Scientific Reports, 2018, 8, 11809.	1.6	4
24	The benefits of the Biotechnology and Biological Sciences Research Council (BBSRC) Diet and Health Research Industry Club (DRINC) to early career researchers working in food, nutrition and human health. Nutrition Bulletin, 2018, 43, 435-441.	0.8	2