Rosemary Wangensteen Fuentes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1034725/publications.pdf

Version: 2024-02-01

64 papers

1,313 citations

394421 19 h-index 33 g-index

64 all docs

64
docs citations

64 times ranked 1626 citing authors

#	Article	lF	CITATIONS
1	Vasoconstrictor and Pressor Effects of Des-Aspartate-Angiotensin I in Rat. Biomedicines, 2022, 10, 1230.	3.2	O
2	The Long-Term Study of Urinary Biomarkers of Renal Injury in Spontaneously Hypertensive Rats. Kidney and Blood Pressure Research, 2021, 46, 502-513.	2.0	3
3	Female Sexual Function and Its Association with the Severity of Menopause-Related Symptoms. International Journal of Environmental Research and Public Health, 2020, 17, 7235.	2.6	15
4	The female sexual function index: reliability and validity in Spanish postmenopausal women. Menopause, 2019, 26, 401-408.	2.0	13
5	5-aminoisoquinoline improves renal function and fibrosis during recovery phase of cisplatin-induced acute kidney injury in rats. Bioscience Reports, 2018, 38, .	2.4	9
6	Klotho and Aminopeptidases as Early Biomarkers of Renal Injury in Zucker Obese Rats. Frontiers in Physiology, 2018, 9, 1599.	2.8	5
7	Thyroid hormones stimulate L-arginine transport in human endothelial cells. Journal of Endocrinology, 2018, 239, 49-62.	2.6	14
8	Glutamyl aminopeptidase in microvesicular and exosomal fractions of urine is related with renal dysfunction in cisplatin-treated rats. PLoS ONE, 2017, 12, e0175462.	2.5	10
9	Hyperthyroidism, but not hypertension, impairs PITX2 expression leading to Wnt-microRNA-ion channel remodeling. PLoS ONE, 2017, 12, e0188473.	2.5	24
10	<scp> </scp> -Arginine metabolism in cardiovascular and renal tissue from hyper- and hypothyroid rats. Experimental Biology and Medicine, 2016, 241, 550-556.	2.4	16
11	Immunological detection of glutamyl aminopeptidase in urine samples from cisplatinâ€ŧreated rats. Proteomics - Clinical Applications, 2015, 9, 630-635.	1.6	9
12	Effects of Arginase Inhibition in Hypertensive Hyperthyroid Rats. American Journal of Hypertension, 2015, 28, 1464-1472.	2.0	6
13	Dietary salt restriction in hyperthyroid rats. Differential influence on left and right ventricular mass. Experimental Biology and Medicine, 2015, 240, 113-120.	2.4	1
14	Interaction of neuropeptidase activities in cortico-limbic regions after acute restraint stress. Behavioural Brain Research, 2015, 287, 42-48.	2.2	17
15	Tissue distribution of CysAP activity and its relationship to blood pressure and water balance. Life Sciences, 2015, 134, 73-78.	4.3	16
16	Influence of thyroid disorders on the kidney expression and plasma activity of aminopeptidase A. Endocrine Regulations, 2015, 49, 68-72.	1.3	5
17	Relationship of Angiotensinase and Vasopressinase Activities Between Hypothalamus, Heart, and Plasma in L-NAME-Treated WKY and SHR. Hormone and Metabolic Research, 2014, 46, 561-567.	1.5	9
18	Brain, Heart and Kidney Correlate for the Control of Blood Pressure and Water Balance: Role of Angiotensinases. Neuroendocrinology, 2014, 100, 198-208.	2.5	19

#	Article	IF	CITATIONS
19	Effect of thyroid hormone–nitric oxide interaction on tumor growth, angiogenesis, and aminopeptidase activity in mice. Tumor Biology, 2014, 35, 5519-5526.	1.8	8
20	The pro-oxidant buthionine sulfoximine (BSO) reduces tumor growth of implanted Lewis lung carcinoma in mice associated with increased protein carbonyl, tubulin abundance, and aminopeptidase activity. Tumor Biology, 2014, 35, 7799-7805.	1.8	2
21	Effects of Antihypertensive Drugs on Angiotensinase Activities in the Testis of Spontaneously Hypertensive Rats. Hormone and Metabolic Research, 2013, 45, 344-348.	1.5	6
22	The Brain-Heart Connection: Frontal Cortex and Left Ventricle Angiotensinase Activities in Control and Captopril-Treated Hypertensive Rats—A Bilateral Study. International Journal of Hypertension, 2013, 2013, 1-7.	1.3	15
23	Influence of thyroid state on cardiac and renal capillary density and glomerular morphology in rats. Journal of Endocrinology, 2013, 216, 43-51.	2.6	30
24	The Renin-Angiotensin System: New Insight into Old Therapies. Current Medicinal Chemistry, 2013, 20, 1313-1322.	2.4	28
25	Long-Term Consequences of Uninephrectomy in Male and Female Rats. Hypertension, 2012, 60, 1458-1463.	2.7	23
26	New method for isolation of both kidneys for studies of vascular reactivity in rats. Experimental Biology and Medicine, 2012, 237, 1457-1461.	2.4	O
27	Cardiovascular and renal manifestations of glutathione depletion induced by buthionine sulfoximine. American Journal of Hypertension, 2012, 25, 629-635.	2.0	15
28	Angiotensinase and Vasopressinase Activities in Hypothalamus, Plasma, and Kidney after Inhibition of Angiotensin-converting Enzyme: Basis for a New Working Hypothesis. Hormone and Metabolic Research, 2012, 44, 152-154.	1.5	12
29	Asymmetrical effect of captopril on the angiotensinase activity in frontal cortex and plasma of the spontaneously hypertensive rats: Expanding the model of neuroendocrine integration. Behavioural Brain Research, 2012, 230, 423-427.	2.2	13
30	Urinary Aminopeptidase Activities as Early and Predictive Biomarkers of Renal Dysfunction in Cisplatin-Treated Rats. PLoS ONE, 2012, 7, e40402.	2.5	22
31	Function and expression of renal epithelial sodium transporters in rats with thyroid dysfunction. Journal of Endocrinological Investigation, 2012, 35, 735-41.	3.3	2
32	Blood pressure increased dramatically in hypertensive rats after left hemisphere lesions with 6-hydroxydopamine. Neuroscience Letters, 2011, 500, 148-150.	2.1	16
33	Contribution of the Amiloride-Sensitive Component and the Na ⁺ /H ⁺ Exchanger to Renal Responsiveness to Vasoconstrictors. Pharmacology, 2011, 88, 142-148.	2.2	1
34	Effects of Clofibrate on Salt Loading-Induced Hypertension in Rats. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-8.	3.0	10
35	Salt sensitivity in experimental thyroid disorders in rats. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E281-E287.	3.5	14
36	Role of Sympathetic Tone in BSO-Induced Hypertension in Mice. American Journal of Hypertension, 2010, 23, 882-888.	2.0	10

#	Article	IF	CITATIONS
37	Rosiglitazone, a Peroxisome Proliferator-Activated Receptor- $\hat{\Gamma}^3$ Agonist, Prevents Microparticle-Induced Vascular Hyporeactivity through the Regulation of Proinflammatory Proteins. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 539-547.	2.5	24
38	Tempol improves renal hemodynamics and pressure natriuresis in hyperthyroid rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R867-R873.	1.8	9
39	The endocrine system in chronic nitric oxide deficiency. European Journal of Endocrinology, 2007, 156, 1-12.	3.7	28
40	Protection Against Endotoxic Shock as a Consequence of Reduced Nitrosative Stress in MLCK210-Null Mice. American Journal of Pathology, 2007, 170, 439-446.	3.8	32
41	Shed Membrane Particles from Preeclamptic Women Generate Vascular Wall Inflammation and Blunt Vascular Contractility. American Journal of Pathology, 2006, 169, 1473-1483.	3.8	87
42	Chronic nitric oxide blockade modulates renal Na–K–2Cl cotransporters. Journal of Hypertension, 2006, 24, 2451-2458.	0.5	12
43	Atrial Angiotensinase Activity in Hypothyroid, Euthyroid, and Hyperthyroid Rats. Journal of Cardiovascular Pharmacology, 2006, 48, 117-120.	1.9	4
44	Effects of chronic treatment with 7-nitroindazole in hyperthyroid rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R1376-R1382.	1.8	11
45	Vascular and renal function in experimental thyroid disorders. European Journal of Endocrinology, 2006, 154, 197-212.	3.7	223
46	Effects of chronic inhibition of inducible nitric oxide synthase in hyperthyroid rats. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E1252-E1257.	3.5	23
47	Antioxidant Enzymes and Effects of Tempol on the Development of Hypertension Induced by Nitric Oxide Inhibition. American Journal of Hypertension, 2005, 18, 871-877.	2.0	41
48	Cardiac and renal antioxidant enzymes and effects of tempol in hyperthyroid rats. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E776-E783.	3.5	31
49	Effects of Quercetin Treatment on Vascular Function in Deoxycorticosterone Acetate-Salt Hypertensive Rats. Comparative Study with Verapamil. Planta Medica, 2004, 70, 334-341.	1.3	51
50	Role of neuronal nitric oxide synthase in response to hypertonic saline loading in rats. Acta Physiologica Scandinavica, 2004, 182, 389-395.	2,2	7
51	Role of sex, gonadectomy and sex hormones in the development of nitric oxide inhibition-induced hypertension. Experimental Physiology, 2004, 89, 155-162.	2.0	26
52	Gender difference in the role of endothelium-derived relaxing factors modulating renal vascular reactivity. European Journal of Pharmacology, 2004, 486, 281-288.	3.5	28
53	Protective effects of the angiotensin II type I (ATI) receptor blockade in low-renin deoxycorticosterone acetate (DOCA)-treated spontaneously hypertensive rats. Clinical Science, 2004, 106, 251-259.	4.3	15
54	Chronic Blockade of Neuronal Nitric Oxide Synthase Does Not Affect Long-Term Control of Blood Pressure in Normal, Saline-Drinking or Deoxycorticosterone-Treated Rats. Experimental Physiology, 2003, 88, 243-250.	2.0	10

#	ARTICLE	IF	CITATIONS
55	Effects of omapatrilat on blood pressure and renal injury in l-name and l-name plus DOCA-treated rats. American Journal of Hypertension, 2003, 16, 33-38.	2.0	12
56	Increased Pressor Sensitivity to Chronic Nitric Oxide Deficiency in Hyperthyroid Rats. Hypertension, 2003, 42, 220-225.	2.7	33
57	Role of endothelium-derived relaxing factors in the renal response to vasoactive agents in hypothyroid rats. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E182-E188.	3.5	19
58	Nitric oxide synthase activity in hyperthyroid and hypothyroid rats. European Journal of Endocrinology, 2002, 147, 117-122.	3.7	84
59	Role of endothelium-derived relaxing factors in adrenomedullin-induced vasodilation in the rat kidney. European Journal of Pharmacology, 2002, 444, 97-102.	3.5	15
60	Chronic alpha1-adrenergic blockade improves hypertension and renal injury in L-NAME and low-renin L-NAME-DOCA hypertensive rats. Medical Science Monitor, 2002, 8, BR378-84.	1.1	9
61	Renal Vascular Reactivity to P ₂ -Purinoceptor Activation in Spontaneously Hypertensive Rats. Pharmacology, 2000, 60, 47-50.	2.2	21
62	Contribution of endothelium-derived relaxing factors to P2Y-purinoceptor-induced vasodilation in the isolated rat kidney. General Pharmacology, 2000, 35, 129-133.	0.7	9
63	Interaction Between Nitric Oxide and Mineralocorticoids in the Long-Term Control of Blood Pressure. Hypertension, 2000, 35, 752-757.	2.7	17
64	Deoxycorticosterone Suppresses the Effects of Losartan in Nitric Oxide—Deficient Hypertensive Rats. Journal of the American Society of Nephrology: JASN, 2000, 11, 1995-2000.	6.1	14