Valeria Cannillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1034509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spark plasma sintering, mechanical and in-vitro behavior of a novel Sr- and Mg-containing bioactive glass for biomedical applications. Journal of the European Ceramic Society, 2022, 42, 1776-1783.	2.8	4
2	Bioactive Glasses in Periodontal Regeneration: Existing Strategies and Future Prospects—A Literature Review. Materials, 2022, 15, 2194.	1.3	9
3	Comparative Study on Bioactive Filler/Biopolymer Scaffolds for Potential Application in Supporting Bone Tissue Regeneration. ACS Applied Polymer Materials, 2022, 4, 4306-4318.	2.0	7
4	Deposition of bioactive glass coatings based on a novel composition containing strontium and magnesium. Journal of the European Ceramic Society, 2022, 42, 6213-6221.	2.8	8
5	Fabrication and Characterization of Quinary High Entropy-Ultra-High Temperature Diborides. Ceramics, 2021, 4, 108-120.	1.0	11
6	Composite Scaffolds for Bone Tissue Regeneration Based on PCL and Mg-Containing Bioactive Glasses. Biology, 2021, 10, 398.	1.3	30
7	Editorial: Covid-19: Materials Science and Engineering Challenges. Frontiers in Materials, 2021, 8, .	1.2	1
8	Toward the understanding of crystallization, mechanical properties and reactivity of multicomponent bioactive glasses. Acta Materialia, 2021, 213, 116977.	3.8	14
9	Editorial: Bioceramics and/or Bioactive Glass-Based Composites. Frontiers in Materials, 2021, 8, .	1.2	1
10	Bioactive Glass Applications: A Literature Review of Human Clinical Trials. Materials, 2021, 14, 5440.	1.3	90
11	Comparison of Three Manufacturing Techniques for Sustainable Porous Clay Ceramics. Materials, 2021, 14, 167.	1.3	3
12	Effects of a Novel Bioactive Glass Composition on Biological Properties of Human Dental Pulp Stem Cells. Materials, 2020, 13, 4049.	1.3	8
13	Incorporation of Bioactive Glasses Containing Mg, Sr, and Zn in Electrospun PCL Fibers by Using Benign Solvents. Applied Sciences (Switzerland), 2020, 10, 5530.	1.3	20
14	A Comprehensive Review of Bioactive Glass Coatings: State of the Art, Challenges and Future Perspectives. Coatings, 2020, 10, 757.	1.2	62
15	A New Generation of Electrospun Fibers Containing Bioactive Glass Particles for Wound Healing. Materials, 2020, 13, 5651.	1.3	18
16	A Review of Bioactive Glass/Natural Polymer Composites: State of the Art. Materials, 2020, 13, 5560.	1.3	86
17	A Novel Bioactive Glass Containing Therapeutic Ions with Enhanced Biocompatibility. Materials, 2020, 13, 4600.	1.3	13
18	Impact of Surface Functionalization by Nanostructured Silver Thin Films on Thermoplastic Central	1.2	3

Venous Catheters: Mechanical, Microscopical and Thermal Analyses. Coatings, 2020, 10, 1034.

#	Article	IF	CITATIONS
19	Hydroxyapatite/bioactive glass functionally graded materials (FGM) for bone tissue engineering. Journal of the European Ceramic Society, 2020, 40, 4623-4634.	2.8	19
20	Chitosan-Based Bioactive Glass Gauze: Microstructural Properties, In Vitro Bioactivity, and Biological Tests. Materials, 2020, 13, 2819.	1.3	20
21	In vitro studies of solution precursor plasmaâ€sprayed copperâ€doped hydroxyapatite coatings with increasing copper content. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2579-2589.	1.6	13
22	A new bioactive glass with extremely high crystallization temperature and outstanding biological performance. Materials Science and Engineering C, 2020, 110, 110699.	3.8	22
23	On the in Vitro Biocompatibility Testing of Bioactive Glasses. Materials, 2020, 13, 1816.	1.3	14
24	Bioactive glasses and glassâ€ceramics versus hydroxyapatite: Comparison of angiogenic potential and biological responsiveness. Journal of Biomedical Materials Research - Part A, 2019, 107, 2601-2609.	2.1	13
25	A New Bioactive Glass/Collagen Hybrid Composite for Applications in Dentistry. Materials, 2019, 12, 2079.	1.3	26
26	Human Mesenchymal Stem Cell Combined with a New Strontium-Enriched Bioactive Glass: An ex-vivo Model for Bone Regeneration. Materials, 2019, 12, 3633.	1.3	25
27	Zinc containing bioactive glasses with ultra-high crystallization temperature, good biological performance and antibacterial effects. Materials Science and Engineering C, 2019, 104, 109910.	3.8	38
28	Design of a novel procedure for the optimization of the mechanical performances of 3D printed scaffolds for bone tissue engineering combining CAD, Taguchi method and FEA. Medical Engineering and Physics, 2019, 69, 92-99.	0.8	14
29	Advanced Open-Celled Structures from Low-Temperature Sintering of a Crystallization-Resistant Bioactive Glass. Materials, 2019, 12, 3653.	1.3	10
30	SBF assays, direct and indirect cell culture tests to evaluate the biological performance of bioglasses and bioglass-based composites: Three paradigmatic cases. Materials Science and Engineering C, 2019, 96, 757-764.	3.8	44
31	Spark plasma sintered CaO-rich bioglass-derived glass-ceramics with different crystallinity ratios: A detailed investigation of their behaviour during biological tests in SBF. Journal of the European Ceramic Society, 2019, 39, 1603-1612.	2.8	3
32	Bioglass and bioceramic composites processed by Spark Plasma Sintering (SPS): biological evaluation Versus SBF test. Biomedical Glasses, 2018, 4, 21-31.	2.4	15
33	A novel bioactive glass containing strontium and magnesium with ultra-high crystallization temperature. Materials Letters, 2018, 213, 67-70.	1.3	43
34	Bone Regeneration by Novel Bioactive Glasses Containing Strontium and/or Magnesium: A Preliminary In-Vivo Study. Materials, 2018, 11, 2223.	1.3	25
35	Direct ink writing of silica-carbon-calcite composite scaffolds from a silicone resin and fillers. Journal of the European Ceramic Society, 2018, 38, 5200-5207.	2.8	17
36	Bioactive Zn-doped hydroxyapatite coatings and their antibacterial efficacy against Escherichia coli and Staphylococcus aureus. Surface and Coatings Technology, 2018, 352, 84-91.	2.2	60

#	Article	IF	CITATIONS
37	Direct ink writing of silica-bonded calcite scaffolds from preceramic polymers and fillers. Biofabrication, 2017, 9, 025012.	3.7	32
38	A comparative in vivo evaluation of bioactive glasses and bioactive glass-based composites for bone tissue repair. Materials Science and Engineering C, 2017, 79, 286-295.	3.8	39
39	Role of magnesium oxide and strontium oxide as modifiers in silicate-based bioactive glasses: Effects on thermal behaviour, mechanical properties and in-vitro bioactivity. Materials Science and Engineering C, 2017, 72, 566-575.	3.8	74
40	Pulsed Electron Deposition of nanostructured bioactive glass coatings for biomedical applications. Ceramics International, 2017, 43, 15862-15867.	2.3	26
41	Innovative hydroxyapatite/bioactive glass composites processed by spark plasma sintering for bone tissue repair. Journal of the European Ceramic Society, 2017, 37, 1723-1733.	2.8	27
42	Bioglass and bioceramic composites processed by Spark Plasma Sintering (SPS): biological evaluation Versus SBF test. Biomedical Glasses, 2017, 3, .	2.4	0
43	Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: State of the art and current applications. Journal of Biomedical Materials Research - Part A, 2016, 104, 1030-1056.	2.1	107
44	Functionally graded materials for orthopedic applications – an update on design and manufacturing. Biotechnology Advances, 2016, 34, 504-531.	6.0	223
45	Composite scaffolds for controlled drug release: Role of the polyurethane nanoparticles on the physical properties and cell behaviour. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 44, 53-60.	1.5	42
46	Properties of Al2O3 coatings by High Velocity Suspension Flame Spraying (HVSFS): Effects of injection systems and torch design. Surface and Coatings Technology, 2015, 270, 175-189.	2.2	26
47	Bioactive glass/hydroxyapatite composites: Mechanical properties and biological evaluation. Materials Science and Engineering C, 2015, 51, 196-205.	3.8	83
48	Comparison between Suspension Plasma Sprayed and High Velocity Suspension Flame Sprayed bioactive coatings. Surface and Coatings Technology, 2015, 280, 232-249.	2.2	51
49	Classical Bioglass® and innovative CaO-rich bioglass powders processed by Spark Plasma Sintering: A comparative study. Journal of the European Ceramic Society, 2015, 35, 4277-4285.	2.8	29
50	Consolidation of different hydroxyapatite powders by SPS: Optimization of the sintering conditions and characterization of the obtained bulk products. Ceramics International, 2015, 41, 725-736.	2.3	31
51	Novel processing of bioglass ceramics from silicone resins containing micro―and nanoâ€sized oxide particle fillers. Journal of Biomedical Materials Research - Part A, 2014, 102, 2502-2510.	2.1	15
52	Microstructural design of functionally graded coatings composed of suspension plasma sprayed hydroxyapatite and bioactive glass. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 551-560.	1.6	32
53	Hydroxyapatite–tricalcium phosphate–bioactive glass ternary composites. Ceramics International, 2014, 40, 3805-3808.	2.3	9
54	Preliminary studies on the valorization of animal flour ash for the obtainment of active glasses. Ceramics International, 2014, 40, 5619-5628.	2.3	10

#	Article	IF	CITATIONS
55	Functional bioactive glass topcoats on hydroxyapatite coatings: Analysis of microstructure and in-vitro bioactivity. Surface and Coatings Technology, 2014, 240, 110-117.	2.2	27
56	Suspension thermal spraying of hydroxyapatite: Microstructure and in vitro behaviour. Materials Science and Engineering C, 2014, 34, 287-303.	3.8	55
57	Sol–gel derived bioactive glasses with low tendency to crystallize: Synthesis, post-sintering bioactivity and possible application for the production of porous scaffolds. Materials Science and Engineering C, 2014, 43, 573-586.	3.8	58
58	Enamelled coatings produced with low-alkaline bioactive glasses. Surface and Coatings Technology, 2014, 248, 1-8.	2.2	19
59	Bioactive glass/ZrO ₂ composites for orthopaedic applications. Biomedical Materials (Bristol), 2014, 9, 015005.	1.7	12
60	Mg- and/or Sr-doped tricalcium phosphate/bioactive glass composites: Synthesis, microstructure and biological responsiveness. Materials Science and Engineering C, 2014, 42, 312-324.	3.8	43
61	Bioactive glass-based composites for the production of dense sintered bodies and porous scaffolds. Materials Science and Engineering C, 2013, 33, 2138-2151.	3.8	28
62	Suspension plasma sprayed bioactive glass coatings: Effects of processing on microstructure, mechanical properties and in-vitro behaviour. Surface and Coatings Technology, 2013, 220, 52-59.	2.2	51
63	Suspension plasma spraying of optimised functionally graded coatings of bioactive glass/hydroxyapatite. Surface and Coatings Technology, 2013, 236, 118-126.	2.2	42
64	A new hydroxyapatite-based biocomposite for bone replacement. Materials Science and Engineering C, 2013, 33, 1091-1101.	3.8	66
65	Synthesis and Thermal Stability of Hydroxyapatite-Coated Zirconia Nanocomposite Powders. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 128-134.	0.6	0
66	Deposition mechanisms in high velocity suspension spraying: Case study for two bioactive materials. Surface and Coatings Technology, 2012, 210, 28-45.	2.2	20
67	Biomimetic coating on bioactive glassâ€derived scaffolds mimicking bone tissue. Journal of Biomedical Materials Research - Part A, 2012, 100A, 3259-3266.	2.1	44
68	Processing and characterization of innovative scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2012, 23, 1397-1409.	1.7	36
69	High-Velocity Suspension Flame Sprayed (HVSFS) Hydroxyapatite Coatings for Biomedical Applications. Journal of Thermal Spray Technology, 2012, 21, 275-287.	1.6	45
70	Low Temperature Sintering of Innovative Bioactive Glasses. Journal of the American Ceramic Society, 2012, 95, 1313-1319.	1.9	55
71	A New Highly Bioactive Composite for Bone Tissue Repair. International Journal of Applied Ceramic Technology, 2012, 9, 455-467.	1.1	12
72	Functionally graded WC–Co/NiAl HVOF coatings for damage tolerance, wear and corrosion protection. Surface and Coatings Technology, 2012, 206, 2585-2601.	2.2	61

#	Article	IF	CITATIONS
73	High velocity suspension flame sprayed (HVSFS) potassium-based bioactive glass coatings with and without TiO2 bond coat. Surface and Coatings Technology, 2012, 206, 3857-3868.	2.2	26
74	Cermet coatings with Fe-based matrix as alternative to WC–CoCr: Mechanical and tribological behaviours. Surface and Coatings Technology, 2012, 206, 4079-4094.	2.2	41
75	Heat treatment of Na ₂ O aOâ€P ₂ O ₅ ‧iO ₂ bioactive glasses: Densification processes and postsintering bioactivity. Journal of Biomedical Materials Research - Part A, 2012, 100A, 305-322.	2.1	38
76	Elaboration and mechanical characterization of multi-phase alumina-based ultra-fine composites. Journal of Materials Science, 2012, 47, 1077-1084.	1.7	17
77	A New Highly Bioactive Composite for Scaffold Applications: A Feasibility Study. Materials, 2011, 4, 339-354.	1.3	33
78	In situ Raman spectroscopy investigation of bioactive glass reactivity: Simulated body fluid solution vs TRIS-buffered solution. Materials Characterization, 2011, 62, 1021-1028.	1.9	83
79	Calcium and potassium addition to facilitate the sintering of bioactive glasses. Materials Letters, 2011, 65, 1825-1827.	1.3	43
80	Coefficient of thermal expansion of bioactive glasses: Available literature data and analytical equation estimates. Ceramics International, 2011, 37, 2963-2972.	2.3	46
81	Microstructure and in vitro behaviour of 45S5 bioglass coatings deposited by high velocity suspension flame spraying (HVSFS). Journal of Materials Science: Materials in Medicine, 2011, 22, 1303-1319.	1.7	51
82	Macroporous Bioglass®-derived scaffolds for bone tissue regeneration. Ceramics International, 2011, 37, 1575-1585.	2.3	77
83	A new potassium-based bioactive glass: Sintering behaviour and possible applications for bioceramic scaffolds. Ceramics International, 2011, 37, 145-157.	2.3	36
84	Bioactive glass coatings: A review. Surface Engineering, 2011, 27, 560-572.	1.1	116
85	Bioactivity of thermal plasma synthesized bovine hydroxyapatite/glass ceramic composites. Journal of Physics: Conference Series, 2010, 208, 012099.	0.3	4
86	Characterization and in vitro-bioactivity of natural hydroxyapatite based bio-glass–ceramics synthesized by thermal plasma processing. Ceramics International, 2010, 36, 1757-1766.	2.3	20
87	Potassium based bioactive glass for bone tissue engineering. Ceramics International, 2010, 36, 2449-2453.	2.3	49
88	Highly porous polycaprolactone-45S5 Bioglass® scaffolds for bone tissue engineering. Composites Science and Technology, 2010, 70, 1869-1878.	3.8	90
89	Surface modification of Al–Al2O3 composites by laser treatment. Optics and Lasers in Engineering, 2010, 48, 1266-1277.	2.0	9
90	Shell Scaffolds: A new approach towards high strength bioceramic scaffolds for bone regeneration. Materials Letters, 2010, 64, 203-206.	1.3	35

#	Article	IF	CITATIONS
91	Steel particles–porcelain stoneware composite tiles: An advanced experimental–computational approach. Journal of the European Ceramic Society, 2010, 30, 1775-1783.	2.8	1
92	Different approaches to produce coatings with bioactive glasses: Enamelling vs plasma spraying. Journal of the European Ceramic Society, 2010, 30, 2031-2039.	2.8	50
93	Effect of the suspension composition on the microstructural properties of high velocity suspension flame sprayed (HVSFS) Al2O3 coatings. Surface and Coatings Technology, 2010, 204, 1163-1179.	2.2	36
94	Wear behaviour of high velocity suspension flame sprayed (HVSFS) Al2O3 coatings produced using micron- and nano-sized powder suspensions. Surface and Coatings Technology, 2010, 204, 2657-2668.	2.2	29
95	Microstructure and in-vitro behaviour of a novel High Velocity Suspension Flame Sprayed (HVSFS) bioactive glass coating. Surface and Coatings Technology, 2010, 205, 1145-1149.	2.2	15
96	Structural characterisation of High Velocity Suspension Flame Sprayed (HVSFS) TiO2 coatings. Surface and Coatings Technology, 2010, 204, 3902-3910.	2.2	24
97	Damage tolerant functionally graded WC–Co/Stainless Steel HVOF coatings. Surface and Coatings Technology, 2010, 205, 2197-2208.	2.2	44
98	Monte Carlo simulation of microstructure evolution in biphasic-systems. Ceramics International, 2010, 36, 1983-1988.	2.3	5
99	Production of Bioglass® 45S5 – Polycaprolactone composite scaffolds via salt-leaching. Composite Structures, 2010, 92, 1823-1832.	3.1	100
100	A New Generation of Scaffolds for Bone Tissue Engineering. Advances in Science and Technology, 2010, 76, 48-53.	0.2	3
101	An overview of the effects of thermal processing on bioactive glasses. Science of Sintering, 2010, 42, 307-320.	0.5	86
102	Potassium-based composition for a bioactive glass. Ceramics International, 2009, 35, 3389-3393.	2.3	54
103	Role of process type and process conditions on phase content and physical properties of thermal sprayed TiO2 coatings. Journal of Materials Science, 2009, 44, 2276-2287.	1.7	27
104	Microstructural and Tribological Investigation of High-Velocity Suspension Flame Sprayed (HVSFS) Al2O3 Coatings. Journal of Thermal Spray Technology, 2009, 18, 35-49.	1.6	66
105	Design of Experiments (DOE) for the Optimization of Titania–hydroxyapatite Functionally Graded Coatings. International Journal of Applied Ceramic Technology, 2009, 6, 537-550.	1.1	13
106	Advances in High Velocity Suspension Flame Spraying (HVSFS). Surface and Coatings Technology, 2009, 203, 2131-2138.	2.2	34
107	Properties of High Velocity Suspension Flame Sprayed (HVSFS) TiO2 coatings. Surface and Coatings Technology, 2009, 203, 1722-1732.	2.2	62
108	Thermal and physical characterisation of apatite/wollastonite bioactive glass–ceramics. Journal of the European Ceramic Society, 2009, 29, 611-619.	2.8	35

#	Article	IF	CITATIONS
109	In vitro characterisation of plasma-sprayed apatite/wollastonite glass–ceramic biocoatings on titanium alloys. Journal of the European Ceramic Society, 2009, 29, 1665-1677.	2.8	38
110	Microstructural and mechanical changes by chemical ageing of glazed ceramic surfaces. Journal of the European Ceramic Society, 2009, 29, 1561-1569.	2.8	12
111	Microstructural and in vitro characterisation of high-velocity suspension flame sprayed (HVSFS) bioactive glass coatings. Journal of the European Ceramic Society, 2009, 29, 2249-2257.	2.8	41
112	Post-deposition laser treatment of plasma sprayed titania-hydroxyapatite functionally graded coatings. Journal of the European Ceramic Society, 2009, 29, 3147-3158.	2.8	20
113	Effect of porosity on the elastic properties of porcelainized stoneware tiles by a multi-layered model. Ceramics International, 2009, 35, 205-211.	2.3	13
114	Chemical durability and microstructural analysis of glasses soaked in water and in biological fluids. Ceramics International, 2009, 35, 2853-2869.	2.3	20
115	Short range investigation of sub-micron zirconia particles. Journal of Physics: Conference Series, 2009, 167, 012041.	0.3	1
116	Alumina-YAG composites: preparation, experimental characterisation and numerical modelling. International Journal of Materials and Product Technology, 2009, 35, 392.	0.1	1
117	Production and characterization of plasma-sprayed TiO2–hydroxyapatite functionally graded coatings. Journal of the European Ceramic Society, 2008, 28, 2161-2169.	2.8	55
118	Cobalt doped glass for the fabrication of percolated glass–alumina functionally graded materials. Ceramics International, 2008, 34, 447-453.	2.3	4
119	Effects of different production techniques on glass–alumina functionally graded materials. Ceramics International, 2008, 34, 1719-1727.	2.3	6
120	An FIB study of sharp indentation testing on plasma-sprayed TiO2. Materials Letters, 2008, 62, 1557-1560.	1.3	15
121	Investigation of High-Velocity Suspension Flame Sprayed (HVSFS) glass coatings. Materials Letters, 2008, 62, 2772-2775.	1.3	27
122	Local and medium range structure of erbium containing glasses: A molecular dynamics study. Journal of Non-Crystalline Solids, 2008, 354, 173-180.	1.5	5
123	<i>In vitro</i> behaviour of titania–hydroxyapatite functionally graded coatings. Advances in Applied Ceramics, 2008, 107, 259-267.	0.6	8
124	Electrochemical comparison between corrosion resistance of some thermally sprayed coatings. International Journal of Surface Science and Engineering, 2008, 2, 222.	0.4	4
125	Surface acoustic wave depth profiling of a functionally graded material. Journal of Applied Physics, 2007, 102, 053508.	1.1	21
126	Glass-Alumina Functionally Graded Materials Produced by Plasma Spraying. Key Engineering Materials, 2007, 333, 227-230.	0.4	1

#	Article	IF	CITATIONS
127	Technological properties of celsian reinforced glass matrix composites. Ceramics International, 2007, 33, 1597-1601.	2.3	4
128	Glass–ceramic functionally graded materials produced with different methods. Journal of the European Ceramic Society, 2007, 27, 1293-1298.	2.8	17
129	Characterization of glass–alumina functionally graded coatings obtained by plasma spraying. Journal of the European Ceramic Society, 2007, 27, 1935-1943.	2.8	25
130	Prediction of the elastic properties profile in glass-alumina functionally graded materials. Journal of the European Ceramic Society, 2007, 27, 2393-2400.	2.8	22
131	Microstructural and tribological comparison of HVOF-sprayed and post-treated M–Mo–Cr–Si (M=Co,) Tj E	тQ _{<u>1</u>1 1 0.}	78 <u>4</u> 314 rg8T
132	Design and optimisation of glass–celsian composites. Composites Part A: Applied Science and Manufacturing, 2006, 37, 23-30.	3.8	12
133	Modeling of ceramic particles filled polymer–matrix nanocomposites. Composites Science and Technology, 2006, 66, 1030-1037.	3.8	83
134	Poly(ε-caprolactone)-based nanocomposites: Influence of compatibilization on properties of poly(ε-caprolactone)–silica nanocomposites. Composites Science and Technology, 2006, 66, 886-894.	3.8	70
135	Preparation and experimental characterization of glass–alumina functionally graded materials. Journal of the European Ceramic Society, 2006, 26, 993-1001.	2.8	23
136	Microstructure-based modelling and experimental investigation of crack propagation in glass–alumina functionally graded materials. Journal of the European Ceramic Society, 2006, 26, 3067-3073.	2.8	31
137	Mechanical and tribological properties of electrolytic hard chrome and HVOF-sprayed coatings. Surface and Coatings Technology, 2006, 200, 2995-3009.	2.2	120
138	Glass–alumina composite coatings by plasma spraying. Part II: Microstructure-based modeling of mechanical properties. Surface and Coatings Technology, 2006, 201, 474-486.	2.2	6
139	Class-alumina composite coatings by plasma spraying. Part I: Microstructural and mechanical characterization. Surface and Coatings Technology, 2006, 201, 458-473.	2.2	29
140	Wear behaviour of thermally sprayed ceramic oxide coatings. Wear, 2006, 261, 1298-1315.	1.5	212
141	Influence of Al2O3 addition on thermal and structural properties of erbium doped glasses. Journal of Materials Science, 2006, 41, 2811-2819.	1.7	19
142	Microscale computational simulation and experimental measurement of thermal residual stresses in glass–alumina functionally graded materials. Journal of the European Ceramic Society, 2006, 26, 1411-1419.	2.8	39
143	Glass-alumina functionally graded materials: their preparation and compositional profile evaluation. Journal of the European Ceramic Society, 2006, 26, 2685-2693.	2.8	20
144	Plasma-sprayed graded ceramic coatings on refractory materials for improved chemical resistance. Journal of the European Ceramic Society, 2006, 26, 2561-2579.	2.8	22

#	Article	IF	CITATIONS
145	Synthesis and Nanocomposite Sintering of Hydroxyapatite-Coated Zirconia Nanopowders. Advances in Science and Technology, 2006, 49, 68-73.	0.2	0
146	Preparation and characterization of epoxy resins filled with submicron spherical zirconia particles. Polimery, 2006, 51, 794-798.	0.4	21
147	Processing glass–pyrochlore composites for nuclear waste encapsulation. Journal of Nuclear Materials, 2005, 341, 12-18.	1.3	42
148	Plasma-sprayed glass-ceramic coatings on ceramic tiles: microstructure, chemical resistance and mechanical properties. Journal of the European Ceramic Society, 2005, 25, 1835-1853.	2.8	47
149	Characterisation of glass matrix composites reinforced with lead zirconate titanate particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 399, 281-291.	2.6	4
150	Mechanical performance and fracture behaviour of glass–matrix composites reinforced with molybdenum particles. Composites Science and Technology, 2005, 65, 1276-1283.	3.8	18
151	The Anorthite-Diopside System: Structural and Devitrification Study. Part I: Structural Characterization by Molecular Dynamic Simulations. Journal of the American Ceramic Society, 2005, 88, 714-718.	1.9	8
152	Epoxy-silica nanocomposites: Preparation, experimental characterization, and modeling. Journal of Applied Polymer Science, 2005, 97, 2382-2386.	1.3	86
153	A stochastic model of damage accumulation in complex microstructures. Journal of Materials Science, 2005, 40, 3993-4004.	1.7	6
154	Experimental Characterization and Computational Simulation of Glass-Alumina Functionally Graded Surfaces. Materials Science Forum, 2005, 492-493, 647-652.	0.3	1
155	Sintering of metal fibre reinforced glass matrix composites using microwave radiation. Advances in Applied Ceramics, 2005, 104, 49-54.	0.6	4
156	Structural characterization of neodymium containing glasses by molecular dynamics simulation. Journal of Non-Crystalline Solids, 2005, 351, 1185-1191.	1.5	27
157	Finite element modelling of brittle matrix composites. , 2005, , 356-373.		1
158	Porous Glasses with Controlled Porosity: Processing and Modelling of Mechanical Properties. Key Engineering Materials, 2004, 264-268, 2243-2246.	0.4	1
159	Use of numerical approaches to predict mechanical properties of brittle bodies containing controlled porosity. Journal of Materials Science, 2004, 39, 4335-4337.	1.7	14
160	Control of pore size by metallic fibres in glass matrix composite foams produced by microwave heating. Journal of the European Ceramic Society, 2004, 24, 3203-3208.	2.8	24
161	Processing of novel glass matrix composites by microwave heating. Journal of Materials Processing Technology, 2004, 155-156, 1749-1755.	3.1	30
162	Preparation, characterisation and computational study of poly(Ϊμ-caprolactone) based nanocomposites. Materials Science and Technology, 2004, 20, 1340-1344.	0.8	44

#	Article	IF	CITATIONS
163	Investigation of the mechanical properties of Mo-reinforced glass-matrix composites. Journal of Non-Crystalline Solids, 2004, 344, 88-93.	1.5	26
164	Title is missing!. Journal of Porous Materials, 2003, 10, 189-200.	1.3	16
165	Experimental and MD Simulations Study of CaOâ^'ZrO2â^'SiO2Glasses. Journal of Physical Chemistry B, 2003, 107, 6519-6525.	1.2	13
166	Numerical modelling of the fracture behaviour of a glass matrix composite reinforced with alumina platelets. Composites Part A: Applied Science and Manufacturing, 2003, 34, 43-51.	3.8	31
167	Numerical Models of the Effect of Heterogeneity on the Behavior of Graded Materials. Key Engineering Materials, 2002, 206-213, 2163-2166.	0.4	7
168	Numerical models for thermal residual stresses in Al2O3 platelets/borosilicate glass matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 323, 246-250.	2.6	39
169	Properties/Structure Relationships in Innovative PCL-SiO2 Nanocomposites. Macromolecular Symposia, 2001, 169, 201-210.	0.4	3
170	Enhancing the mechanical properties of porcelain stoneware tiles. Journal of the European Ceramic Society, 2001, 21, 785-793.	2.8	108
171	Title is missing!. Journal of Materials Science Letters, 2001, 20, 1889-1891.	0.5	17
172	SPURIOUS RESONANCES IN NUMERICAL TIME INTEGRATION METHODS FOR LINEAR DYNAMICS. Journal of Sound and Vibration, 2000, 238, 389-399.	2.1	5
173	Computation and simulation of reliability parameters and their variations in heterogeneous materials. Acta Materialia, 2000, 48, 3593-3605.	3.8	27
174	Understanding Crystallization, Mechanical Properties and Reactivity of Multicomponent Bioactive Glasses Through Molecular Dynamics Simulations. SSRN Electronic Journal, 0, , .	0.4	0
175	Hermetic Glass Bodies with Controlled Porosity: Processing and Properties. Ceramic Engineering and Science Proceedings, 0, , 191-202.	0.1	2
176	Effect Of A Heat Treatment On The Bioactivity Of Titania-Hydroxyapatite Functionally Graded Coatings. , 0, , 101-108.		0