
Nicholas P Farrell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1034137/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Click Chemistry Approach to Targeted DNA Crosslinking with <i>cis</i> â€Platinum(II)â€Modified Triplexâ€Forming Oligonucleotides. Angewandte Chemie - International Edition, 2022, 61, .	13.8	16
2	Exploitation of Sulfated Glycosaminoglycan Status for Precision Medicine of Triplatin in Triple-Negative Breast Cancer. Molecular Cancer Therapeutics, 2022, 21, 271-281.	4.1	9
3	Metalloglycomics of tris(2,2′-bipyridyl) cobalt and ruthenium compounds. Journal of Inorganic Biochemistry, 2022, 229, 111731.	3.5	1
4	Substitution-inert polynuclear platinum complexes and Glycosaminoglycans: A molecular dynamics study of its non-covalent interactions. Journal of Inorganic Biochemistry, 2022, 232, 111811.	3.5	1
5	Controlling Nuclease Degradation of Wireframe DNA Origami with Minor Groove Binders. ACS Nano, 2022, 16, 8954-8966.	14.6	22
6	Conformational Modulation of Iduronic Acid ontaining Sulfated Glycosaminoglycans by a Polynuclear Platinum Compound and Implications for Development of Antimetastatic Platinum Drugs. Angewandte Chemie - International Edition, 2021, 60, 3283-3289.	13.8	12
7	Conformational Modulation of Iduronic Acid ontaining Sulfated Glycosaminoglycans by a Polynuclear Platinum Compound and Implications for Development of Antimetastatic Platinum Drugs. Angewandte Chemie, 2021, 133, 3320-3326.	2.0	5
8	Platinum complexes act as shielding agents against virus infection. Chemical Communications, 2021, 57, 4666-4669.	4.1	14
9	On the Biology of Werner's Complex. Angewandte Chemie, 2021, 133, 17260-17267.	2.0	0
10	On the Biology of Werner's Complex. Angewandte Chemie - International Edition, 2021, 60, 17123-17130.	13.8	5
11	Intramolecular platinum migration on a peptide in gas phase during collision-induced dissociation. Journal of Inorganic Biochemistry, 2020, 202, 110858.	3.5	0
12	Substitution-Inert Polynuclear Platinum Complexes Inhibit Reverse Transcription Preferentially in RNA Triplex-Forming Templates. Inorganic Chemistry, 2020, 59, 15135-15143.	4.0	5
13	Modulation of relaxation activity of human topoisomerases by Pt(II)-based complexes. Journal of Inorganic Biochemistry, 2020, 211, 111178.	3.5	1
14	The leaving group in Au(i)–phosphine compounds dictates cytotoxic pathways in CEM leukemia cells and reactivity towards a Cys2His2 model zinc finger. Dalton Transactions, 2020, 49, 16319-16328.	3.3	1
15	Medicinal inorganic chemistry: New perspectives and targets for the periodic table. Advances in Inorganic Chemistry, 2020, 75, 57-86.	1.0	7
16	Ru(<scp>ii</scp>)-Naphthoquinone complexes with high selectivity for triple-negative breast cancer. Dalton Transactions, 2020, 49, 16193-16203.	3.3	22
17	Substitution-inert polynuclear platinum compounds inhibit human cytomegalovirus attachment and entry. Antiviral Research, 2020, 184, 104957.	4.1	14
18	Metal ions and the extracellular matrix in tumor migration. FEBS Journal, 2019, 286, 2950-2964.	4.7	32

#	Article	IF	CITATIONS
19	Molecular methods for assessment of non-covalent metallodrug–DNA interactions. Chemical Society Reviews, 2019, 48, 971-988.	38.1	196
20	Biological relevance of interaction of platinum drugs with O-donor ligands. Inorganica Chimica Acta, 2019, 495, 118974.	2.4	7
21	TriplatinNC and Biomolecules: Building Models Based on Non-covalent Interactions. Frontiers in Chemistry, 2019, 7, 307.	3.6	13
22	Influence of geometric isomerism on the binding of platinum anticancer agents with phospholipids. Dalton Transactions, 2019, 48, 9791-9800.	3.3	5
23	Substitution-Inert Polynuclear Platinum Complexes with Dangling Amines: Condensation/Aggregation of Nucleic Acids and Inhibition of DNA-Related Enzymatic Activities. Inorganic Chemistry, 2019, 58, 6804-6810.	4.0	22
24	The facile and visualizable identification of broad-spectrum inhibitors of MDM2/p53 using co-expressed protein complexes. Analyst, The, 2019, 144, 3773-3781.	3.5	1
25	DNA binding, cytotoxic effects and probable targets of an oxindolimine–vanadyl complex as an antitumor agent. New Journal of Chemistry, 2019, 43, 17831-17840.	2.8	6
26	Substitutionâ€Inert Polynuclear Platinum Complexes Act as Potent Inducers of Condensation/Aggregation of Short Single†and Doubleâ€Stranded DNA and RNA Oligonucleotides. Chemistry - A European Journal, 2019, 25, 2995-2999.	3.3	10
27	Glycans as Ligands in Bioinorganic Chemistry. Probing the Interaction of a Trinuclear Platinum Anticancer Complex with Defined Monosaccharide Fragments of Heparan Sulfate. Inorganic Chemistry, 2019, 58, 7146-7155.	4.0	14
28	Investigation of 1-Methylcytosine as a Ligand in Gold(III) Complexes: Synthesis and Protein Interactions. Inorganics, 2019, 7, 1.	2.7	21
29	Comparison of Metal–Ammine Compounds Binding to DNA and Heparin. Glycans as Ligands in Bioinorganic Chemistry. Inorganic Chemistry, 2018, 57, 3116-3125.	4.0	22
30	Substitutionâ€Inert Polynuclear Platinum Complexes as Metalloshielding Agents for Heparan Sulfate. Chemistry - A European Journal, 2018, 24, 6606-6616.	3.3	23
31	10. GALLIUM COMPLEXES AS ANTICANCER DRUGS. , 2018, 18, 281-302.		19
32	8. COORDINATION COMPLEXES OF TITANIUM(IV) FOR ANTICANCER THERAPY. , 2018, 18, 219-250.		22
33	Structural Factors Affecting Binding of Platinum Anticancer Agents with Phospholipids: Influence of Charge and Phosphate Clamp Formation. Chemistry - A European Journal, 2018, 24, 4643-4652.	3.3	4
34	Translesion DNA synthesis across double-base lesions derived from cross-links of an antitumor trinuclear platinum compound: primer extension, conformational and thermodynamic studies. Metallomics, 2018, 10, 132-144.	2.4	3
35	X-ray Absorption Spectroscopy Combined with Time-Dependent Density Functional Theory Elucidates Differential Substitution Pathways of Au(I) and Au(III) with Zinc Fingers. Inorganic Chemistry, 2018, 57, 218-230.	4.0	23
36	Gold atalyzed C–S Arylâ€Group Transfer in Zinc Finger Proteins. Angewandte Chemie, 2018, 130, 9449-9453.	2.0	5

#	Article	IF	CITATIONS
37	Substitutionâ€Inert Polynuclear Platinum Complexes That Inhibit the Activity of DNA Polymerase in Triplexâ€Forming Templates. Angewandte Chemie - International Edition, 2018, 57, 8535-8539.	13.8	14
38	Substitutionâ€Inert Polynuclear Platinum Complexes That Inhibit the Activity of DNA Polymerase in Triplexâ€Forming Templates. Angewandte Chemie, 2018, 130, 8671-8675.	2.0	4
39	Binding affinity studies of 1,2,3-triazole copper(II) complexes to human serum albumin. Journal of Coordination Chemistry, 2018, 71, 1894-1909.	2.2	10
40	Gold atalyzed C–S Arylâ€Group Transfer in Zinc Finger Proteins. Angewandte Chemie - International Edition, 2018, 57, 9305-9309.	13.8	30
41	Abstract 3941: Heparan sulfate, a new target for platinum in metastatic TNBC. Cancer Research, 2018, 78, 3941-3941.	0.9	1
42	Diversity in Gold Finger Structure Elucidated by Travelingâ€Wave Ion Mobility Mass Spectrometry. Angewandte Chemie, 2017, 129, 4535-4538.	2.0	8
43	Diversity in Gold Finger Structure Elucidated by Travelingâ€Wave Ion Mobility Mass Spectrometry. Angewandte Chemie - International Edition, 2017, 56, 4464-4467.	13.8	21
44	Probing the HIV-1 NCp7 Nucleocapsid Protein with Site-Specific Gold(I)–Phosphine Complexes. Inorganic Chemistry, 2017, 56, 12308-12318.	4.0	18
45	18F-Labeled Carboplatin Derivative for PET Imaging of Platinum Drug Distribution. Journal of Nuclear Medicine, 2017, 58, 1997-2003.	5.0	7
46	Enhancement of the physicochemical properties of [Pt(dien)(nucleobase)]2+ for HIVNCp7 targeting. Chemical Science, 2017, 8, 1269-1281.	7.4	15
47	Au(<scp>iii</scp>) compounds as HIV nucleocapsid protein (NCp7)–nucleic acid antagonists. Chemical Communications, 2017, 53, 91-94.	4.1	28
48	Antiangiogenic platinum through glycan targeting. Chemical Science, 2017, 8, 241-252.	7.4	35
49	Tuning the reactivity of Sp1 zinc fingers with platinum complexes. Dalton Transactions, 2016, 45, 8712-8716.	3.3	13
50	Inhibition of nuclear factor kappaB proteins-platinated DNA interactions correlates with cytotoxic effectiveness of the platinum complexes. Scientific Reports, 2016, 6, 28474.	3.3	5
51	Interaction of the HIV NCp7 Protein with Platinum(II) and Gold(III) Complexes Containing Tridentate Ligands. Inorganic Chemistry, 2016, 55, 11396-11407.	4.0	13
52	The phosphate clamp as recognition motif in platinum–DNA interactions. Inorganica Chimica Acta, 2016, 452, 25-33.	2.4	27
53	Effects of coordination mode of 2-mercaptothiazoline on reactivity of Au(I) compounds with thiols and sulfur-containing proteins. Journal of Inorganic Biochemistry, 2016, 165, 136-145.	3.5	14
54	Suppression of RAF/MEK or PI3K synergizes cytotoxicity of receptor tyrosine kinase inhibitors in glioma tumor-initiating cells. Journal of Translational Medicine, 2016, 14, 46.	4.4	31

#	Article	IF	CITATIONS
55	[Au(dien)(N-heterocycle)] ³⁺ : Reactivity with Biomolecules and Zinc Finger Peptides. Inorganic Chemistry, 2015, 54, 79-86.	4.0	28
56	Reduced accumulation of platinum drugs is not observed in drug-resistant ovarian cancer cell lines derived from cisplatin-treated patients. Journal of Inorganic Biochemistry, 2015, 149, 45-48.	3.5	10
57	Multi-platinum anti-cancer agents. Substitution-inert compounds for tumor selectivity and new targets. Chemical Society Reviews, 2015, 44, 8773-8785.	38.1	174
58	Solution studies on DNA interactions of substitution-inert platinum complexes mediated via the phosphate clamp. Dalton Transactions, 2015, 44, 3563-3572.	3.3	24
59	The reaction of dichlorodiammineplatinum(II), [PtCl2(NH3)2], isomers with zinc fingers. Journal of Inorganic Biochemistry, 2015, 143, 117-122.	3.5	14
60	Nucleolar Targeting by Platinum: p53-Independent Apoptosis Follows rRNA Inhibition, Cell-Cycle Arrest, and DNA Compaction. Molecular Pharmaceutics, 2015, 12, 287-297.	4.6	34
61	Competitive formation of DNA linkage isomers by a trinuclear platinum complex and the influence of pre-association. Dalton Transactions, 2015, 44, 3583-3593.	3.3	8
62	Rücktitelbild: The Bioinorganic Chemistry of Apoptosis: Potential Inhibitory Zinc Binding Sites in Caspase-3 (Angew. Chem. 16/2014). Angewandte Chemie, 2014, 126, 4336-4336.	2.0	0
63	Substitutionâ€Inert Trinuclear Platinum Complexes Efficiently Condense/Aggregate Nucleic Acids and Inhibit Enzymatic Activity. Angewandte Chemie - International Edition, 2014, 53, 12812-12816.	13.8	42
64	Substitutionâ€Inert Trinuclear Platinum Complexes Efficiently Condense/Aggregate Nucleic Acids and Inhibit Enzymatic Activity. Angewandte Chemie, 2014, 126, 13026-13030.	2.0	11
65	The phosphate clamp: sequence selective nucleic acid binding profiles and conformational induction of endonuclease inhibition by cationic Triplatin complexes. Nucleic Acids Research, 2014, 42, 13474-13487.	14.5	41
66	Modulation of the stacking interaction of MN4 (M=Pt, Pd, Au) complexes with tryptophan through N-heterocyclic ligands. Journal of Inorganic Biochemistry, 2014, 132, 2-5.	3.5	11
67	DNA Condensing Effects and Sequence Selectivity of DNA Binding of Antitumor Noncovalent Polynuclear Platinum Complexes. Inorganic Chemistry, 2014, 53, 1662-1671.	4.0	62
68	The dynamics of zinc sites in proteins: electronic basis for coordination sphere expansion at structural sites. Metallomics, 2014, 6, 2230-2241.	2.4	28
69	A new approach to glycan targeting: enzyme inhibition by oligosaccharide metalloshielding. Chemical Communications, 2014, 50, 4056-4058.	4.1	27
70	Synthesis and Properties of the First [Au(dien)(N-heterocycle)]3+ Compounds. Inorganic Chemistry, 2014, 53, 30-32.	4.0	10
71	Dinuclear Platinum Complexes Containing Planar Aromatic Ligands to Enhance Stacking Interactions with Proteins. ChemMedChem, 2014, 9, 1155-1160.	3.2	2
72	The Bioinorganic Chemistry of Apoptosis: Potential Inhibitory Zinc Binding Sites in Caspaseâ€3. Angewandte Chemie - International Edition, 2014, 53, 4098-4101.	13.8	32

#	Article	IF	CITATIONS
73	Gold(I)-Phosphine-N-Heterocycles: Biological Activity and Specific (Ligand) Interactions on the C-Terminal HIVNCp7 Zinc Finger. Inorganic Chemistry, 2013, 52, 11280-11287.	4.0	50
74	Zinc finger peptide cleavage by a dinuclear platinum compound. Chemical Communications, 2013, 49, 6986.	4.1	4
75	NanoSIMS multi-element imaging reveals internalisation and nucleolar targeting for a highly-charged polynuclear platinum compound. Chemical Communications, 2013, 49, 6944.	4.1	75
76	Exploring the DNA binding/cleavage, cellular accumulation and topoisomerase inhibition of 2-hydroxy-3-(aminomethyl)-1,4-naphthoquinone Mannich bases and their platinum(II) complexes. Journal of Inorganic Biochemistry, 2013, 119, 54-64.	3.5	55
77	Competitive formation of both long-range 5′–5′ and short-range antiparallel 3′–3′ DNA interstrand cross-links by a trinuclear platinum complex on binding to a 10-mer duplex. Dalton Transactions, 2013, 42, 3181-3187.	d 3.3	9
78	Platinum-based drugs and proteins: Reactivity and relevance to DNA adduct formation. Journal of Inorganic Biochemistry, 2013, 122, 27-37.	3.5	46
79	Retained platinum uptake and indifference to p53 status make novel transplatinum agents active in platinum-resistant cells compared to cisplatin and oxaliplatin. Cell Cycle, 2012, 11, 963-973.	2.6	13
80	Platinum–nucleobase PtN4 complexes as chemotypes for selective peptide reactions with biomolecules. Inorganica Chimica Acta, 2012, 393, 222-229.	2.4	10
81	Heparan Sulfate Proteoglycan-Mediated Entry Pathway for Charged Tri-Platinum Compounds: Differential Cellular Accumulation Mechanisms for Platinum. Molecular Pharmaceutics, 2012, 9, 1795-1802.	4.6	34
82	Chimeric Platinum-Polyamines and DNA Binding. Kinetics of DNA Interstrand Cross-Link Formation by Dinuclear Platinum Complexes with Polyamine Linkers. Journal of the American Chemical Society, 2012, 134, 7135-7146.	13.7	27
83	Platinated DNA Affects Zinc Finger Conformation. Interaction of a Platinated Single-Stranded Oligonucleotide and the C-Terminal Zinc Finger of Nucleocapsid Protein HIVNCp7. Biochemistry, 2012, 51, 1752-1761.	2.5	19
84	Platinum anticancer agents and antidepressants: desipramine enhances platinum-based cytotoxicity in human colon cancer cells. Journal of Biological Inorganic Chemistry, 2012, 17, 123-132.	2.6	17
85	Thermodynamic stability and energetics of DNA duplexes containing major intrastrand cross-links of second-generation antitumor dinuclear PtII complexes. Journal of Biological Inorganic Chemistry, 2012, 17, 187-196.	2.6	7
86	Antitumor bifunctional dinuclear PtII complex BBR3535 forms interduplex DNA cross-links under molecular crowding conditions. Journal of Biological Inorganic Chemistry, 2012, 17, 239-245.	2.6	17
87	Solution studies of dinuclear polyamine-linked platinum-based antitumour complexes. Dalton Transactions, 2011, 40, 4147.	3.3	11
88	Modulation of drug activation profiles through carboxylate ligand modification in cytotoxic trans-platinum planar amine compounds. Dalton Transactions, 2011, 40, 10983.	3.3	16
89	Zinc finger proteins as templates for metal ion exchange and ligand reactivity. Chemical and biological consequences. Metallomics, 2011, 3, 121.	2.4	105
90	Interaction of arsenite with a zinc finger CCHC peptide: Evidence for formation of an As–Zn-peptide mixed complex. Journal of Inorganic Biochemistry, 2011, 105, 1753-1758.	3.5	10

#	Article	IF	CITATIONS
91	DNA Interstrand Cross‣inks of an Antitumor Trinuclear Platinum(II) Complex: Thermodynamic Analysis and Chemical Probing. Chemistry - an Asian Journal, 2011, 6, 1566-1574.	3.3	12
92	Effects of Noncovalent Platinum Drug–Protein Interactions on Drug Efficacy: Use of Fluorescent Conjugates as Probes for Drug Metabolism. Molecular Pharmaceutics, 2011, 8, 940-948.	4.6	55
93	DNA Reactivity Profile of <i>trans</i> â€Platinum Planar Amine Derivatives. ChemMedChem, 2011, 6, 1283-1290.	3.2	15
94	Combined action of the dinuclear platinum compound BBR3610 with the Pl3â€K inhibitor PXâ€866 in glioblastoma. International Journal of Cancer, 2011, 128, 787-796.	5.1	21
95	Platinum Formulations as Anticancer Drugs Clinical and Pre-Clinical Studies. Current Topics in Medicinal Chemistry, 2011, 11, 2623-2631.	2.1	67
96	The phosphate clamp: a small and independent motif for nucleic acid backbone recognition. Nucleic Acids Research, 2011, 39, 325-336.	14.5	61
97	Conformation and recognition of DNA modified by a new antitumor dinuclear PtII complex resistant to decomposition by sulfur nucleophiles. Biochemical Pharmacology, 2010, 79, 112-121.	4.4	33
98	The polynuclear platinum BBR3610 induces G2/M arrest and autophagy early and apoptosis late in glioma cells. Neuro-Oncology, 2010, 12, 1269-1277.	1.2	22
99	Determination of the Kinetic Profile of a Dinuclear Platinum Anticancer Complex in the Presence of Sulfate: Introducing a New Tool for the Expedited Analysis of 2D [¹ H, ¹⁵ N] HSQC NMR Spectra. Inorganic Chemistry, 2010, 49, 10815-10819.	4.0	17
100	Excursions in polynuclear platinum DNA binding. Chemical Communications, 2010, 46, 6640.	4.1	106
101	Factors Affecting DNA–DNA Interstrand Cross‣inks in the Antiparallel 3′–3′ Sense: A Comparison with the 5′–5′ Directional Isomer. Chemistry - A European Journal, 2009, 15, 9365-9374.	^h 3.3	31
102	Towards Antitumor Active <i>trans</i> â€Platinum Compounds. European Journal of Inorganic Chemistry, 2009, 2009, 1293-1302.	2.0	142
103	Structural consequences of a 3′Â→Â3′ DNA interstrand cross-link by a trinuclear platinum complex: unique formation of two such cross-links in a 10-mer duplex. Journal of Biological Inorganic Chemistry, 2009, 14, 969-977.	2.6	14
104	Modulation of transplanaramine platinum complex reactivity by systematic modification of carrier and leaving groups. Inorganica Chimica Acta, 2009, 362, 929-934.	2.4	15
105	Zinc finger proteins as templates for metal ion exchange: Substitution effects on the C-finger of HIV nucleocapsid NCp7 using M(chelate) species (M = Pt, Pd, Au). Journal of Inorganic Biochemistry, 2009, 103, 1347-1354.	3.5	60
106	Reactions of palladium and gold complexes with zinc-thiolate chelates using electrospray mass		

#	Article	IF	CITATIONS
109	Interaction of trivalent antimony with a CCHC zinc finger domain: potential relevance to the mechanism of action of antimonial drugs. Chemical Communications, 2008, , 4828.	4.1	42
110	Amide-Based Prodrugs of Spermidine-Bridged Dinuclear Platinum. Synthesis, DNA Binding, and Biological Activity. Journal of Medicinal Chemistry, 2008, 51, 2254-2260.	6.4	37
111	Thiolate Bridging and Metal Exchange in Adducts of a Zinc Finger Model and PtII Complexes: Biomimetic Studies of Protein/Pt/DNA Interactions. Journal of the American Chemical Society, 2008, 130, 6272-6280.	13.7	53
112	Comparison of cis and trans-Platinum Mononucleobase Compounds with DNA and Protein Models. Australian Journal of Chemistry, 2008, 61, 694.	0.9	5
113	Low-Dose BBR3610 Toxicity in Colon Cancer Cells Is p53-Independent and Enhanced by Inhibition of Epidermal Growth Factor Receptor (ERBB1)-Phosphatidyl Inositol 3 Kinase Signaling. Molecular Pharmacology, 2007, 72, 704-714.	2.3	32
114	Pre-association of polynuclear platinum anticancer agents on a protein, human serum albumin. Implications for drug design. Dalton Transactions, 2007, , 4938.	3.3	37
115	Dinuclear Platinum Complexes with Biological Relevance Based on the 1,2-Diaminocyclohexane Carrier Ligand. Inorganic Chemistry, 2007, 46, 5820-5822.	4.0	34
116	Differences in the cellular response and signaling pathways of cisplatin and BBR3464 ([{trans-PtCl(NH3)2}2μ-(trans-Pt(NH3)2(H2N(CH2)6-NH2)2)]4+) influenced by copper homeostasis. Biochemical Pharmacology, 2007, 73, 1270-1279.	4.4	37
117	Promotion of DNA strand breaks, interstrand cross-links and apoptotic cell death in A2780 human ovarian cancer cells by transplatinum planar amine complexes. Biochemical Pharmacology, 2007, 73, 1749-1757.	4.4	22
118	A Third Mode of DNA Binding:Â Phosphate Clamps by a Polynuclear Platinum Complex. Journal of the American Chemical Society, 2006, 128, 16092-16103.	13.7	166
119	Mechanism of the Membrane Interaction of Polynuclear Platinum Anticancer Agents. Implications for Cellular Uptakeâ€. Biochemistry, 2006, 45, 4248-4256.	2.5	50
120	Covalent and Noncovalent Interactions for [Metal(dien)nucleobase]2+Complexes withl-Tryptophan Derivatives:Â Formation of Palladiumâ^'Tryptophan Species by Nucleobase Substitution under Biologically Relevant Conditions. Inorganic Chemistry, 2006, 45, 1638-1645.	4.0	39
121	Structure-Activity Relationships Within Di- and Trinuclear Platinum Phase-I Clinical Anticancer Agents. , 2006, , 477-496.		8
122	Targeting Retroviral Zn Finger-DNA Interactions: A Small-Molecule Approach Using the Electrophilic Nature of trans-Platinum-Nucleobase Compounds. Chemistry and Biology, 2006, 13, 539-548.	6.0	62
123	Biological Consequences of Trinuclear Platinum Complexes: Comparison of [{trans-PtCl(NH3)2}2l1¼-(trans-Pt(NH3)2(H2N(CH2)6-NH2)2)]4+ (BBR 3464) with Its Noncovalent Congeners. Molecular Pharmacology, 2006, 69, 666-672.	2.3	56
124	Polynuclear platinum anticancer drugs are more potent than cisplatin and induce cell cycle arrest in glioma1. Neuro-Oncology, 2006, 8, 215-226.	1.2	82
125	Effects of geometric isomerism in dinuclear platinum antitumor complexes on aquation reactions in the presence of perchlorate, acetate and phosphate. Journal of Biological Inorganic Chemistry, 2005, 10, 652-666.	2.6	34
126	Conformation, protein recognition and repair of DNA interstrand and intrastrand cross-links of Antitumor trans-[PtCl2(NH3)(thiazole)]. Nucleic Acids Research, 2005, 33, 5819-5828.	14.5	45

#	Article	IF	CITATIONS
127	Synthesis, Characterization, and Cytotoxicity of a Novel Highly Charged Trinuclear Platinum Compound. Enhancement of Cellular Uptake with Charge. Inorganic Chemistry, 2005, 44, 9598-9600.	4.0	128
128	Platination of Nucleobases To Enhance Noncovalent Recognition in Proteinâ^'DNA/RNA Complexes. Inorganic Chemistry, 2005, 44, 483-485.	4.0	19
129	Platinum Anticancer Drugs: From Laboratory to Clinic. ACS Symposium Series, 2005, , 62-79.	0.5	1
130	Preclinical perspectives on the use of platinum compounds in cancer chemotherapy. Seminars in Oncology, 2004, 31, 1-9.	2.2	30
131	Cytotoxicity, DNA strand breakage and DNA–protein crosslinking by a novel transplatinum compound in human A2780 ovarian and MCF-7 breast carcinoma cells. Biochemical Pharmacology, 2004, 68, 857-866.	4.4	57
132	Synthesis and DNA conformational changes of non-covalent polynuclear platinum complexes. Journal of Inorganic Biochemistry, 2004, 98, 1591-1598.	3.5	48
133	Long Range 1,4 and 1,6-Interstrand Cross-Links Formed by a Trinuclear Platinum Complex. Minor Groove Preassociation Affects Kinetics and Mechanism of Cross-Link Formation as Well as Adduct Structure. Journal of the American Chemical Society, 2004, 126, 2166-2180.	13.7	111
134	Polynuclear platinum drugs. Metal Ions in Biological Systems, 2004, 42, 251-96.	0.4	30
135	Cooperative effects in long-range 1,4 DNA-DNA interstrand cross-links formed by polynuclear platinum complexes: an unexpected syn orientation of adenine bases outside the binding sites. Journal of Biological Inorganic Chemistry, 2003, 8, 19-28, The nature of the DNA template (single-versus double-stranded) affects the rate of aquation of a	2.6	59
136	dinuclear Pt anticancer drugElectronic supplementary information (ESI) available: experimental conditions for the NMR reactions, the models used for the kinetic fits and [1H,15N] HSQC NMR spectra of the final products from reactions of 1 with the single strand (I) (before and after addition of the) Tj ETQq0 0 0	rg <mark>81</mark> /Ove	erlock 10 Tf 5
137	Chemical Communications, 2003, , 122-123. DNA Interstrand Cross-links of the Novel Antitumor Trinuclear Platinum Complex BBR3464. Journal of Biological Chemistry, 2002, 277, 48076-48086.	3.4	140
138	Kinetic and Equilibria Studies of the Aquation of the Trinuclear Platinum Phase II Anticancer Agent [{trans-PtCl(NH3)2}2{μ-trans-Pt(NH3)2(NH2(CH2)6NH2)2}]4+(BBR3464). Inorganic Chemistry, 2002, 41, 1101-1109.	4.0	74
139	A comparison of DNA binding profiles of dinuclear platinum compounds with polyamine linkers and the trinuclear platinum phase II clinical agent BBR3464. Journal of Biological Inorganic Chemistry, 2002, 7, 397-404.	2.6	53
140	Approaches to Selective DNA Binding in Polyfunctional Dinuclear Platinum Chemistry. The Synthesis of a Trifunctional Compound and Its Interaction with the Mononucleotide 5â€ ⁻ -Guanosine Monophosphate. Inorganic Chemistry, 2001, 40, 6324-6327.	4.0	22
141	Conformation, Recognition by High Mobility Group Domain Proteins, and Nucleotide Excision Repair of DNA Intrastrand Cross-links of Novel Antitumor Trinuclear Platinum Complex BBR3464. Journal of Biological Chemistry, 2001, 276, 22191-22199.	3.4	74
142	Thermodynamic properties of duplex DNA containing a site-specific d(GpG) intrastrand crosslink formed by an antitumor dinuclear platinum complex. Nucleic Acids Research, 2001, 29, 2034-2040.	14.5	31
143	Kinetics and mechanism for reduction of anticancer-active tetrachloroam(m)ine platinum(IV) compounds by glutathione. Journal of Biological Inorganic Chemistry, 2000, 5, 300-306.	2.6	67
144	Steric control of DNA interstrand cross-link sites of trans platinum complexes: specificity can be dictated by planar nonleaving groups. Journal of Biological Inorganic Chemistry, 2000, 5, 364-368.	2.6	56

Article	IF	CITATIONS
Equilibrium and Kinetic Studies of the Aquation of the Dinuclear Platinum Complex [{trans-PtCl(NH3)2}2(μ-NH2(CH2)6NH2)]2+: pKaDeterminations of Aqua Ligands via [1H,15N] NMR Spectroscopy. Inorganic Chemistry, 2000, 39, 1710-1715.	4.0	64
Inversion of the Cis Geometry Requirement for Cytotoxicity in Structurally Novel Platinum(II) Complexes Containing the Bidentate N,O-Donor Pyridin-2-yl-acetate. Inorganic Chemistry, 2000, 39, 1882-1890.	4.0	44
Cellular pharmacology of polynuclear platinum anti-cancer agents. Journal of Inorganic Biochemistry, 1999, 77, 51-57.	3.5	101
Consequences of Nucleic Acid Conformation on the Binding of a Trinuclear Platinum Drugâ€. Biochemistry, 1999, 38, 14731-14737.	2.5	67
Effect of Geometric Isomerism in Dinuclear Platinum Antitumor Complexes on DNA Interstrand Cross-Linkingâ€. Biochemistry, 1999, 38, 10997-11005.	2.5	74
DNA Modifications by a Novel Bifunctional Trinuclear Platinum Phase I Anticancer Agent. Biochemistry, 1999, 38, 6781-6790.	2.5	219
DNA interactions of antitumor trans-[PtCl2(NH3)(quinoline)]. FEBS Journal, 1998, 254, 547-557.	0.2	80
Investigation of thetrans effect in the fragmentation of dinuclear platinum complexes by electrospray ionization surface-induced dissociation tandem mass spectrometry. , 1998, 33, 436-443.		17
Modification of Platinum(II) Antitumor Complexes with Sulfur Ligands. 1. Synthesis, Structure, and Spectroscopic Properties of Cationic Complexes of the Types [PtCl(diamine)(L)]NO3and [{PtCl(diamine)}2(L-L)](NO3)2(L = Monofunctional Thiourea Derivative; L-L = Bifunctional Thiourea) Tj ETQq1 1 C	0. 78 4314 r	g <mark>ð</mark> 7 /Overloc
Applications of Inorganic Chemistry in Biology: An Interdisciplinary Graduate Course. Journal of Chemical Education, 1998, 75, 739.	2.3	0
DNA Interactions of Bifunctional Dinuclear Platinum(II) Antitumor Agents. FEBS Journal, 1997, 246, 508-517.	0.2	94
A novel DNA structure induced by the anticancer bisplatinum compound crosslinked to a GpC site in DNA. Nature Structural Biology, 1995, 2, 577-586.	9.7	56
DNA Binding and Chemistry of Dinuclear Platinum Complexes. Comments on Inorganic Chemistry, 1995, 16, 373-389.	5.2	92
Anticancer activity in murine and human tumor cell lines of bis(platinum) complexes incorporating straight-chain aliphatic diamine linker groups. Journal of Medicinal Chemistry, 1992, 35, 4526-4532.	6.4	65
A comparison of chemical reactivity, cytotoxicity, interstrand crosslinking and DNA sequence specificity of bis(platinum) complexes containing monodentate or bidentate coordination spheres with their monomeric analogs. Biochemistry, 1990, 29, 9522-9531.	2.5	175
Interaction of novel bis(platinum) complexes with DNA. Nucleic Acids Research, 1989, 17, 9719-9733.	14.5	77
Bis(platinum) complexes containing two platinum cis-diammine units. Synthesis and initial DNA-binding studies. Journal of the American Chemical Society, 1988, 110, 5018-5019.	13.7	92
	Equilibrium and Kinetic Studies of the Aquation of the Dinuclear Platinum Complex [[transPrc](NH3)22[20]A-H32(CH3)6NH2)[2-42 pkaDeterminations of Aqua Ligands via [1H,15N] NMR Spectroscopy. Inorganic Chemistry, 2000, 39, 1710-1715. Inversion of the Cis Geometry Requirement for Cytotoxicity in Structurally Novel Platinum(II) Complexes Containing the Bidentate N,O-Donor Pyridin-2-yl-acetate. Inorganic Chemistry, 2000, 39, 1882-1890. Cellular pharmacology of polynuclear platinum anti-cancer agents. Journal of Inorganic Biochemistry, 1999, 77, 51-57. Consequences of Nucleic Acid Conformation on the Binding of a Trinuclear Platinum DrugãC. Biochemistry, 1999, 38, 14731-14737. Effect of Geometric Isomerism in Dinuclear Platinum Antitumor Complexes on DNA Interstrand Cross Linkingãé. Biochemistry, 1999, 38, 10997-11005. DNA Modifications by a Novel Bifunctional Trinuclear Platinum Phase I Anticancer Agent. Biochemistry, 1999, 38, 6781-6790. DNA Interactions of antitumor trans-[PtCl2(NH3)(quinoline)]. FEBS Journal, 1998, 254, 547-557. Investigation of thetras effect In the fragmentation of dinuclear platinum complexes by electrospray Ionization surface-induced dissociation tandem mass spectrometry., 1998, 33, 436-443. Modification of Platinum(II) Antitumor Complexes with Suffur Ugands. 1, Synthesis, Structure, and Spectroscopic Properties of Cationic Complexes with Suffur Ugands. 1, Synthesis, Structure, and Spectroscopic Properties of Cationic Complexes with Suffur Ugands. 1, Synthesis, Structure, and Spectroscopic Properties of Cationic Complexes of the Types [PtCl2(diamine)/L1)NO3and [PtCl(diamine)/2(L-1)(NO3)2(L = Monofunctional Thiourea Derivative; LL = Bifunctional Thiourea) Tj ETQq1 1 C Applications of Inorganic Chemistry in Biology: An Interdisciplinary Graduate Course. Journal of Chemical Education, 1998, 75, 739. DNA Interactions of Bifunctional Dinuclear Platinum Complexes. Comments on Inorganic Chemistry, 1995, 16, 572-586. DNA Binding and Chemistry of Dinuclear Platinum Complexes. Comments on Inorganic Che	Equilibrium and Kinetic Studies of the Aquation of the Dinuclear Platinum Complex [(transPtC](NH3)2)2(1/4).NH2(CH2)SM12)[2+2A pKaDeterminations of Aqua Ligands via [1H,15N] NMR 4.0 Spectroscopy. Inorganic Chemistry, 2000, 39, 1710-1715. 4.0 Inversion of the Cis Geometry Requirement for Cyctoxicity in Structurally Novel Platinum(III) Complexes Containing the Bidentate N.O.Oonor Pyridin:2-yl-acetate. Inorganic Chemistry, 2000, 39, 4.0 4.0 Gellular pharmacology of polynuclear platinum anti-cancer agents. Journal of Inorganic Biochemistry, 1999, 77, 51-57. 3.3 Consequences of Nucleic Acid Conformation on the Binding of a Trinuclear Platinum Drug&E. 2.6 Effect of Geometric Isomerism in Diruclear Platinum Antitumor Complexes on DNA Interstrand Crass-Linking&E. Biochemistry, 1999, 38, 10997-11005. 2.6 DNA Modifications by a Novel Bifunctional Trinuclear Platinum Phase I Anticancer Agent. 2.6 DNA interactions of antitumor trans-[PtCl2(NH3)(quinoline)]. FEBS Journal, 1998, 254, 547-557. 0.2 Investigation of thetrans effect in the fragmentation of dinuclear platinum complexes by electrospray Ionization surface-induced dissociation transes spectrometry., 1998, 33, 436-443. 3.3 Modifications of Inorganic Chemistry in Biology: An Interdisciplinary Graduate Course. Journal of Penetroscopic Properties of Catonic Complexes with Suffur Lingands. 1. Synthesis, Structure, and Spectroscopic Properties of Catonic Complexes with Suffur Lingands. 1. Synthesis, Structure, and Spectroscopic Properties of Catonic Complexes with Suffur Lingands. 1. Synthesis, Structure, and

162 Progress in Dioxygen Complexes of Metalloporphyrins. , 1979, , 751-772.

#	Article	IF	CITATIONS
163	Synthesis, properties, and x-ray structural characterization of the hexakis(dimethyl) Tj ETQq1 1 0.784314 rgBT /C)verlock 1 4.0	.0 ଫୁ ₆ 50 742
164	Antitumor substitution-inert polynuclear platinum complexes stabilize G-quadruplex DNA and suppress G-quadruplex-mediated gene expression. Inorganic Chemistry Frontiers, 0, , .	6.0	2