Yunhua Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1034104/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Megakaryocyte endomitosis is a failure of late cytokinesis related to defects in the contractile ring and Rho/Rock signaling. Blood, 2008, 112, 3164-3174.	0.6	171
2	Brain abnormalities, defective meiotic chromosome synapsis and female subfertility in HSF2 null mice. EMBO Journal, 2002, 21, 2591-2601.	3.5	164
3	Proplatelet formation is regulated by the Rho/ROCK pathway. Blood, 2007, 109, 4229-4236.	0.6	153
4	RUNX1-induced silencing of non-muscle myosin heavy chain IIB contributes to megakaryocyte polyploidization. Nature Communications, 2012, 3, 717.	5.8	122
5	From hematopoietic stem cells to platelets. Journal of Thrombosis and Haemostasis, 2007, 5, 318-327.	1.9	116
6	Regulation of megakaryocyte maturation and platelet formation. Journal of Thrombosis and Haemostasis, 2009, 7, 227-234.	1.9	86
7	Role of heat-shock factor 2 in cerebral cortex formation and as a regulatorof p35 expression. Genes and Development, 2006, 20, 836-847.	2.7	85
8	The distribution of heat shock proteins in the nervous system of the unstressed mouse embryo suggests a role in neuronal and non-neuronal differentiation. Cell Stress and Chaperones, 2000, 5, 291.	1.2	78
9	MAL/SRF complex is involved in platelet formation and megakaryocyte migration by regulating MYL9 (MLC2) and MMP9. Blood, 2009, 114, 4221-4232.	0.6	77
10	MYH10 protein expression in platelets as a biomarker of RUNX1 and FLI1 alterations. Blood, 2012, 120, 2719-2722.	0.6	68
11	The formin DIAPH1 (mDia1) regulates megakaryocyte proplatelet formation by remodeling the actin and microtubule cytoskeletons. Blood, 2014, 124, 3967-3977.	0.6	59
12	P53 activation inhibits all types of hematopoietic progenitors and all stages of megakaryopoiesis. Oncotarget, 2016, 7, 31980-31992.	0.8	38
13	Aurora B is dispensable for megakaryocyte polyploidization, but contributes to the endomitotic process. Blood, 2010, 116, 2345-2355.	0.6	37
14	Caspase-activated ROCK-1 allows erythroblast terminal maturation independently of cytokine-induced Rho signaling. Cell Death and Differentiation, 2011, 18, 678-689.	5.0	28
15	Presence of a defect in karyokinesis during megakaryocyte endomitosis. Cell Cycle, 2012, 11, 4385-4389.	1.3	21
16	Dosing time dependent <i>in vitro</i> pharmacodynamics of Everolimus despite a defective circadian clock. Cell Cycle, 2018, 17, 33-42.	1.3	21
17	BMAL1 Knockdown Leans Epithelial–Mesenchymal Balance toward Epithelial Properties and Decreases the Chemoresistance of Colon Carcinoma Cells. International Journal of Molecular Sciences, 2021, 22, 5247.	1.8	19
18	Activity of nonmuscle myosin II isoforms determines localization at the cleavage furrow of megakaryocytes. Blood, 2016, 128, 3137-3145.	0.6	17

Yunhua Chang

#	Article	IF	CITATIONS
19	BMAL1 knockdown triggers different colon carcinoma cell fates by altering the delicate equilibrium between AKT/mTOR and P53/P21 pathways. Aging, 2020, 12, 8067-8083.	1.4	16
20	The cell division control protein 42–Src family kinase–neural Wiskott–Aldrich syndrome protein pathway regulates human proplatelet formation. Journal of Thrombosis and Haemostasis, 2016, 14, 2524-2535.	1.9	15
21	Carboxyl-terminal-dependent recruitment of nonmuscle myosin II to megakaryocyte contractile ring during polyploidization. Blood, 2014, 124, 2564-2568.	0.6	11
22	Distinct localizations and roles of nonâ€muscle myosin II during proplatelet formation and platelet release. Journal of Thrombosis and Haemostasis, 2015, 13, 851-859.	1.9	10
23	Chronotherapy with defective circadian clock?. Aging, 2018, 10, 520-521.	1.4	3