List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1034057/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	BMP signaling controls muscle mass. Nature Genetics, 2013, 45, 1309-1318.	9.4	379
2	Signalling pathways regulating muscle mass in ageing skeletal muscle. The role of the IGF1-Akt-mTOR-FoxO pathway. Biogerontology, 2013, 14, 303-323.	2.0	274
3	Single Muscle Fiber Proteomics Reveals Fiber-Type-Specific Features of Human Muscle Aging. Cell Reports, 2017, 19, 2396-2409.	2.9	213
4	Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation. FASEB Journal, 2009, 23, 3896-3905.	0.2	196
5	Greater loss in muscle mass and function but smaller metabolic alterations in older compared with younger men following 2 wk of bed rest and recovery. Journal of Applied Physiology, 2016, 120, 922-929.	1.2	114
6	Oxidative stress by monoamine oxidases is causally involved in myofiber damage in muscular dystrophy. Human Molecular Genetics, 2010, 19, 4207-4215.	1.4	108
7	Nutrition and Acne: Therapeutic Potential of Ketogenic Diets. Skin Pharmacology and Physiology, 2012, 25, 111-117.	1.1	87
8	Fast fibres in a large animal: fibre types, contractile properties and myosin expression in pig skeletal muscles. Journal of Experimental Biology, 2004, 207, 1875-1886.	0.8	81
9	Akt activation prevents the force drop induced by eccentric contractions in dystrophin-deficient skeletal muscle. Human Molecular Genetics, 2008, 17, 3686-3696.	1.4	75
10	FoxOâ€dependent atrogenes vary among catabolic conditions and play a key role in muscle atrophy induced by hindlimb suspension. Journal of Physiology, 2017, 595, 1143-1158.	1.3	75
11	Fiber types in canine muscles: myosin isoform expression and functional characterization. American Journal of Physiology - Cell Physiology, 2007, 292, C1915-C1926.	2.1	73
12	Expression of eight distinct MHC isoforms in bovine striated muscles:evidence for MHC-2B presence only in extraocular muscles. Journal of Experimental Biology, 2005, 208, 4243-4253.	0.8	71
13	Denervation in murine fast-twitch muscle: short-term physiological changes and temporal expression profiling. Physiological Genomics, 2006, 25, 60-74.	1.0	70
14	Effects of local vibrations on skeletal muscle trophism in elderly people: mechanical, cellular, and molecular events. International Journal of Molecular Medicine, 2009, 24, 503-12.	1.8	66
15	<i>In vivo</i> and <i>in vitro</i> evidence that intrinsic upper―and lowerâ€Iimb skeletal muscle function is unaffected by ageing and disuse in oldestâ€old humans. Acta Physiologica, 2015, 215, 58-71.	1.8	57
16	Neuromuscular junction instability and altered intracellular calcium handling as early determinants of force loss during unloading in humans. Journal of Physiology, 2021, 599, 3037-3061.	1.3	55
17	A Mutation in the <i>CASQ1</i> Gene Causes a Vacuolar Myopathy with Accumulation of Sarcoplasmic Reticulum Protein Aggregates. Human Mutation, 2014, 35, 1163-1170.	1.1	53
18	Identification and characterization of three novel mutations in the <i>CASQ1</i> gene in four patients with tubular aggregate myopathy. Human Mutation, 2017, 38, 1761-1773.	1.1	51

#	Article	IF	CITATIONS
19	Effects of Chronic Atrial Fibrillation on Active and Passive Force Generation in Human Atrial Myofibrils. Circulation Research, 2010, 107, 144-152.	2.0	44
20	Increased phosphorylation of myosin light chain associated with slow-to-fast transition in rat soleus. American Journal of Physiology - Cell Physiology, 2003, 285, C575-C583.	2.1	43
21	Neuromuscular electrical stimulation improves skeletal muscle regeneration through satellite cell fusion with myofibers in healthy elderly subjects. Journal of Applied Physiology, 2017, 123, 501-512.	1.2	43
22	Loss of maximal explosive power of lower limbs after 2Âweeks of disuse and incomplete recovery after retraining in older adults. Journal of Physiology, 2018, 596, 647-665.	1.3	43
23	Eccentric contractions lead to myofibrillar dysfunction in muscular dystrophy. Journal of Applied Physiology, 2010, 108, 105-111.	1.2	42
24	Improved V̇O ₂ uptake kinetics and shift in muscle fiber type in high-altitude trekkers. Journal of Applied Physiology, 2011, 111, 1597-1605.	1.2	40
25	Masticatory myosin unveiled: first determination of contractile parameters of muscle fibers from carnivore jaw muscles. American Journal of Physiology - Cell Physiology, 2008, 295, C1535-C1542.	2.1	39
26	Inflammation in muscular dystrophy and the beneficial effects of nonâ€steroidal antiâ€inflammatory drugs. Muscle and Nerve, 2012, 46, 773-784.	1.0	39
27	Nerve influence on myosin light chain phosphorylation in slow and fast skeletal muscles. FEBS Journal, 2005, 272, 5771-5785.	2.2	38
28	Myostatin shows a specific expression pattern in pig skeletal and extraocular muscles during pre- and post-natal growth. Differentiation, 2008, 76, 168-181.	1.0	38
29	Expression and identification of 10 sarcomeric MyHC isoforms in human skeletal muscles of different embryological origin. Diversity and similarity in mammalian species. Annals of Anatomy, 2016, 207, 9-20.	1.0	30
30	Deletion of small ankyrin 1 (sAnk1) isoforms results in structural and functional alterations in aging skeletal muscle fibers. American Journal of Physiology - Cell Physiology, 2015, 308, C123-C138.	2.1	26
31	Musculoskeletal adaptations to strength training in frail elderly: a matter of quantity or quality?. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 663-677.	2.9	25
32	Mitochondrial Ca2+-Handling in Fast Skeletal Muscle Fibers from Wild Type and Calsequestrin-Null Mice. PLoS ONE, 2013, 8, e74919.	1.1	25
33	S1P ₂ receptor promotes mouse skeletal muscle regeneration. Journal of Applied Physiology, 2012, 113, 707-713.	1.2	23
34	Neuromuscular Electrical Stimulation Induces Skeletal Muscle Fiber Remodeling and Specific Gene Expression Profile in Healthy Elderly. Frontiers in Physiology, 2019, 10, 1459.	1.3	23
35	Age Dependent Modification of the Metabolic Profile of the Tibialis Anterior Muscle Fibers in C57BL/6J Mice. International Journal of Molecular Sciences, 2020, 21, 3923.	1.8	22
36	Signatures of muscle disuse in spaceflight and bed rest revealed by single muscle fiber proteomics. , 2022, 1, .		22

#	Article	IF	CITATIONS
37	Resveratrol treatment reduces the appearance of tubular aggregates and improves the resistance to fatigue in aging mice skeletal muscles. Experimental Gerontology, 2018, 111, 170-179.	1.2	21
38	Transcription Profile Analysis of <i>Vastus Lateralis</i> Muscle from Patients with Chronic Fatigue Syndrome. International Journal of Immunopathology and Pharmacology, 2009, 22, 795-807.	1.0	19
39	Skeletal Muscle Fiber Size and Gene Expression in the Oldest-Old With Differing Degrees of Mobility. Frontiers in Physiology, 2019, 10, 313.	1.3	18
40	The Potential of Calorie Restriction and Calorie Restriction Mimetics in Delaying Aging: Focus on Experimental Models. Nutrients, 2021, 13, 2346.	1.7	18
41	Protein Supplementation Increases Postexercise Plasma Myostatin Concentration After 8 Weeks of Resistance Training in Young Physically Active Subjects. Journal of Medicinal Food, 2015, 18, 137-143.	0.8	17
42	Gokyo Khumbu/Ama Dablam Trek 2012: effects of physical training and high-altitude exposure on oxidative metabolism, muscle composition, and metabolic cost of walking in women. European Journal of Applied Physiology, 2016, 116, 129-144.	1.2	17
43	Latissimus Dorsi Fine Needle Muscle Biopsy: A Novel and Efficient Approach to Study Proximal Muscles of Upper Limbs. Journal of Surgical Research, 2010, 164, e257-e263.	0.8	16
44	Myosin Isoforms and Contractile Properties of Single Fibers of Human Latissimus Dorsi Muscle. BioMed Research International, 2013, 2013, 1-7.	0.9	15
45	The sarcomeric myosin heavy chain gene family in the dog: Analysis of isoform diversity and comparison with other mammalian species. Genomics, 2007, 89, 224-236.	1.3	14
46	Nutrition, Diet and Healthy Aging. Nutrients, 2022, 14, 190.	1.7	14
47	Functional Characterization of Muscle Fibres from Patients with Chronic Fatigue Syndrome: Case-Control Study. International Journal of Immunopathology and Pharmacology, 2009, 22, 427-436.	1.0	13
48	Are muscle fibres of body builders intrinsically weaker? A comparison with single fibres of agedâ€matched controls. Acta Physiologica, 2021, 231, e13557.	1.8	13
49	Protein Supplementation Does Not Further Increase Latissimus Dorsi Muscle Fiber Hypertrophy after Eight Weeks of Resistance Training in Novice Subjects, but Partially Counteracts the Fast-to-Slow Muscle Fiber Transition. Nutrients, 2016, 8, 331.	1.7	12
50	Long-term resveratrol treatment improves the capillarization in the skeletal muscles of ageing C57BL/6J mice. International Journal of Food Sciences and Nutrition, 2021, 72, 37-44.	1.3	12
51	Role of p66shc in skeletal muscle function. Scientific Reports, 2017, 7, 6283.	1.6	11
52	New immortalized human stromal cell lines enhancing in vitro expansion of cord blood hematopoietic stem cells. International Journal of Molecular Medicine, 2004, 13, 363.	1.8	10
53	Age-dependent neuromuscular impairment in prion protein knockout mice. Muscle and Nerve, 2016, 53, 269-279.	1.0	10
54	The Regenerative Potential of Female Skeletal Muscle upon Hypobaric Hypoxic Exposure. Frontiers in Physiology, 2016, 7, 303.	1.3	9

#	Article	IF	CITATIONS
55	Early Biomarkers of Muscle Atrophy and of Neuromuscular Alterations During 10â€Day Bed Rest. FASEB Journal, 2020, 34, 1-1.	0.2	9
56	Myosin heavy chain isoforms in human laryngeal muscles: an expression study based on gel electrophoresis. International Journal of Molecular Medicine, 2008, 22, 375-9.	1.8	7
57	A short-term treatment with resveratrol improves the inflammatory conditions of Middle-aged mice skeletal muscles. International Journal of Food Sciences and Nutrition, 2022, , 1-8.	1.3	6
58	The effect of leg preference on mechanical efficiency during single-leg extension exercise. Journal of Applied Physiology, 2021, 131, 553-565.	1.2	4
59	Age-dependent variations in the expression of myosin isoforms and myogenic factors during the involution of the proximal sesamoidean ligament of sheep. Research in Veterinary Science, 2019, 124, 270-279.	0.9	3
60	Myosin heavy chain isoforms in human laryngeal muscles: An expression study based on gel electrophoresis. International Journal of Molecular Medicine, 1998, 22, 375.	1.8	2
61	2B Myosin Heavy Chain Isoform Expression in Bovine Skeletal Muscle. Veterinary Research Communications, 2004, 28, 201-204.	0.6	2
62	Phenotypic expression of 2b myosin heavy chain isoform: a comparative study among species and different muscles. Veterinary Research Communications, 2009, 33, 105-107.	0.6	2
63	Inducible Activation of Akt Increases Skeletal Muscle Mass and Force Without Satellite Cell Activation. Biophysical Journal, 2010, 98, 153a.	0.2	2
64	Resveratrol, aging, and fatigue. , 2020, , 309-317.		2
65	The SR Calcium Content of Fast Muscle Fibres Lacking Calsequestrin is Reduced and not Sufficient for Sustained Contractions. Biophysical Journal, 2011, 100, 594a.	0.2	0
66	Rapid Changes in Mitochondrial Ca2+-Concentration in Fast Skeletal Muscle Fibers from Wild Type and Calsequestrin Null Mice. Biophysical Journal, 2012, 102, 312a.	0.2	0
67	N-Acetylcysteine, a Potent Anti-Oxidant, Rescues the Malignant Hyperthermia and Environmental Heat Stroke Phenotype of Calsequestrin-1 Knockout Mice. Biophysical Journal, 2013, 104, 202a.	0.2	0
68	O.20 BMP signalling controls muscle mass. Neuromuscular Disorders, 2013, 23, 850-851.	0.3	0
69	Large Hypertrophy but Unmodified Specific Tension of Single Fibers of Body Builders. FASEB Journal, 2020, 34, 1-1.	0.2	0