Katherine E Whitaker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1033963/publications.pdf Version: 2024-02-01

		36303	24982
112	11,931	51	109
papers	citations	h-index	g-index
113 all docs	113 docs citations	113 times ranked	4468 citing authors

#	Article	IF	CITATIONS
1	3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE-MASS DISTRIBUTION SINCE <i>z</i> = 3. Astrophysical Journal, 2014, 788, 28.	4.5	944
2	THE STAR FORMATION MASS SEQUENCE OUT TO <i>z</i> = 2.5. Astrophysical Journal Letters, 2012, 754, L29.	8.3	746
3	3D-HST WFC3-SELECTED PHOTOMETRIC CATALOGS IN THE FIVE CANDELS/3D-HST FIELDS: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR MASSES. Astrophysical Journal, Supplement Series, 2014, 214, 24.	7.7	728
4	CONSTRAINING THE LOW-MASS SLOPE OF THE STAR FORMATION SEQUENCE AT 0.5 < <i>z</i> < 2.5. Astrophysical Journal, 2014, 795, 104.	4.5	646
5	THE GROWTH OF MASSIVE GALAXIES SINCE <i>z</i> = 2. Astrophysical Journal, 2010, 709, 1018-1041.	4.5	645
6	3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE <i>HUBBLE SPACE TELESCOPE</i> . Astrophysical Journal, Supplement Series, 2012, 200, 13.	7.7	536
7	THE 3D-HST SURVEY: <i>HUBBLE SPACE TELESCOPE</i> WFC3/G141 GRISM SPECTRA, REDSHIFTS, AND EMISSION LINE MEASUREMENTS FOR â^¼100,000 GALAXIES. Astrophysical Journal, Supplement Series, 2016, 225, 27.	7.7	513
8	THE NEWFIRM MEDIUM-BAND SURVEY: PHOTOMETRIC CATALOGS, REDSHIFTS, AND THE BIMODAL COLOR DISTRIBUTION OF GALAXIES OUT TO <i>z</i>	4.5	376
9	THE MOSFIRE DEEP EVOLUTION FIELD (MOSDEF) SURVEY: REST-FRAME OPTICAL SPECTROSCOPY FOR â ⁻¹ /41500 <i>H</i> -SELECTED GALAXIES AT \$1.37leqslant zleqslant 3.8\$. Astrophysical Journal, Supplement Series, 2015, 218, 15.	7.7	312
10	THE NUMBER DENSITY AND MASS DENSITY OF STAR-FORMING AND QUIESCENT GALAXIES AT 0.4 ⩽ <i>z</i> àâ	©1⁄2 2.2. 4.5	286
11	BULGE GROWTH AND QUENCHING SINCE <i>z</i> = 2.5 IN CANDELS/3D-HST. Astrophysical Journal, 2014, 788, 11.	4.5	244
12	THE SFR–M _* RELATION AND EMPIRICAL STAR FORMATION HISTORIES FROM ZFOURGE AT 0.5 < z < 4*. Astrophysical Journal, 2016, 817, 118.	4.5	241
13	FORMING COMPACT MASSIVE GALAXIES. Astrophysical Journal, 2015, 813, 23.	4.5	240
14	THE DEAD SEQUENCE: A CLEAR BIMODALITY IN GALAXY COLORS FROM <i>z</i> = 0 to <i>z</i> = 2.5. Astrophysical Journal, 2009, 706, L173-L177.	4.5	212
15	A CANDELS-3D-HST SYNERGY: RESOLVED STAR FORMATION PATTERNS AT 0.7 < <i>z</i> < 1.5. Astrophysical Journal, 2013, 779, 135.	4.5	202
16	THE ASSEMBLY OF MILKY-WAY-LIKE GALAXIES SINCE <i>z</i> â^¼ 2.5. Astrophysical Journal Letters, 2013, 771, L35.	8.3	202
17	A LARGE POPULATION OF MASSIVE COMPACT POST-STARBURST GALAXIES AT <i>z</i> > 1: IMPLICATIONS FOR THE SIZE EVOLUTION AND QUENCHING MECHANISM OF QUIESCENT GALAXIES. Astrophysical Journal, 2012, 745, 179.	4.5	186
18	WHERE STARS FORM: INSIDE-OUT GROWTH AND COHERENT STAR FORMATION FROM HST HαÂMAPS OF 3200 GALAXIES ACROSS THE MAIN SEQUENCE AT 0.7Â< zÂ<Â1.5. Astrophysical Journal, 2016, 828, 27.	4.5	166

#	Article	IF	CITATIONS
19	THE FOURSTAR GALAXY EVOLUTION SURVEY (ZFOURGE): ULTRAVIOLET TO FAR-INFRARED CATALOGS, MEDIUM-BANDWIDTH PHOTOMETRIC REDSHIFTS WITH IMPROVED ACCURACY, STELLAR MASSES, AND CONFIRMATION OF QUIESCENT GALAXIES TO zÂâ ⁻¹ /4Â3.5*. Astrophysical Journal, 2016, 830, 51.	4.5	166
20	An Older, More Quiescent Universe from Panchromatic SED Fitting of the 3D-HST Survey. Astrophysical Journal, 2019, 877, 140.	4.5	156
21	DIRECT MEASUREMENTS OF DUST ATTENUATION IN <i>z</i> â^1/4 1.5 STAR-FORMING GALAXIES FROM 3D-HST: IMPLICATIONS FOR DUST GEOMETRY AND STAR FORMATION RATES. Astrophysical Journal, 2014, 788, 86.	4.5	150
22	GALAXY CLUSTERING IN THE NEWFIRM MEDIUM BAND SURVEY: THE RELATIONSHIP BETWEEN STELLAR MASS AND DARK MATTER HALO MASS AT 1 < <i>z</i> < 2. Astrophysical Journal, 2011, 728, 46.	4.5	143
23	THE SPECTRAL ENERGY DISTRIBUTION OF POST-STARBURST GALAXIES IN THE NEWFIRM MEDIUM-BAND SURVEY: A LOW CONTRIBUTION FROM TP-AGB STARS. Astrophysical Journal Letters, 2010, 722, L64-L69.	8.3	139
24	COSMOS-DASH: The Evolution of the Galaxy Size–Mass Relation since zÂâ^1⁄4Â3 from New Wide-field WFC3 Imaging Combined with CANDELS/3D-HST. Astrophysical Journal, 2019, 880, 57.	4.5	118
25	QUIESCENT GALAXIES IN THE 3D-HST SURVEY: SPECTROSCOPIC CONFIRMATION OF A LARGE NUMBER OF GALAXIES WITH RELATIVELY OLD STELLAR POPULATIONS AT <i>z</i> â ¹ / ₄ 2. Astrophysical Journal Letters, 2013, 770, L39.	8.3	117
26	The Constant Average Relationship between Dust-obscured Star Formation and Stellar Mass from zÂ=Â0 to zÂ=Â2.5. Astrophysical Journal, 2017, 850, 208.	4.5	114
27	DENSE CORES IN GALAXIES OUT TO <i>z</i> = 2.5 IN SDSS, UltraVISTA, AND THE FIVE 3D-HST/CANDELS FIELDS. Astrophysical Journal, 2014, 791, 45.	4.5	111
28	THE MOST MASSIVE GALAXIES AT 3.0 ⩽ <i>z</i> < 4.0 IN THE NEWFIRM MEDIUM-BAND SURVEY: PROPERTIE AND IMPROVED CONSTRAINTS ON THE STELLAR MASS FUNCTION. Astrophysical Journal, 2010, 725, 1277-1295.	ES 4.5	105
29	FIRST RESULTS FROM THE 3D-HST SURVEY: THE STRIKING DIVERSITY OF MASSIVE GALAXIES AT <i>z</i> > 1. Astrophysical Journal Letters, 2011, 743, L15.	8.3	103
30	GALAXY STRUCTURE AS A DRIVER OF THE STAR FORMATION SEQUENCE SLOPE AND SCATTER. Astrophysical Journal Letters, 2015, 811, L12.	8.3	98
31	THE NATURE OF EXTREME EMISSION LINE GALAXIES AT <i>z</i> = 1-2: KINEMATICS AND METALLICITIES FROM NEAR-INFRARED SPECTROSCOPY. Astrophysical Journal, 2014, 791, 17.	4.5	97
32	THE STELLAR VELOCITY DISPERSION OF A COMPACT MASSIVE GALAXY AT <i>z</i> = 1.80 USING X-SHOOTER: CONFIRMATION OF THE EVOLUTION IN THE MASS-SIZE AND MASS-DISPERSION RELATIONS [,] . Astrophysical Journal Letters, 2011, 736, L9.	8.3	94
33	\hat{H}_{\pm}^{1} EQUIVALENT WIDTHS FROM THE 3D-HST SURVEY: EVOLUTION WITH REDSHIFT AND DEPENDENCE ON STELLAR MASS. Astrophysical Journal Letters, 2012, 757, L22.	8.3	91
34	Galaxy Environment in the 3D-HST Fields: Witnessing the Onset of Satellite Quenching at zÂâ^¼Â1–2. Astrophysical Journal, 2017, 835, 153.	4.5	88
35	Predicting Quiescence: The Dependence of Specific Star Formation Rate on Galaxy Size and Central Density at 0.5 < z < 2.5. Astrophysical Journal, 2017, 838, 19.	4.5	87
36	SPATIALLY RESOLVED DUST MAPS FROM BALMER DECREMENTS IN GALAXIES AT z â^¼ 1.4. Astrophysical Journal Letters, 2016, 817, L9.	8.3	84

KATHERINE E WHITAKER

#	Article	IF	CITATIONS
37	The NEWFIRM Medium-Band Survey: Filter Definitions and First Results. Publications of the Astronomical Society of the Pacific, 2009, 121, 2-8.	3.1	78
38	REDSHIFT EVOLUTION OF THE GALAXY VELOCITY DISPERSION FUNCTION. Astrophysical Journal Letters, 2011, 737, L31.	8.3	75
39	HOW DEAD ARE DEAD GALAXIES? MID-INFRARED FLUXES OF QUIESCENT GALAXIES AT REDSHIFT 0.3 < <i>z</i> < 2.5: IMPLICATIONS FOR STAR FORMATION RATES AND DUST HEATING. Astrophysical Journal, 2014, 796, 35.	4.5	75
40	OBSERVATIONS OF ENVIRONMENTAL QUENCHING IN GROUPS IN THE 11 GYR SINCE <i>z</i> = 2.5: DIFFERENT QUENCHING FOR CENTRAL AND SATELLITE GALAXIES. Astrophysical Journal, 2014, 789, 164.	4.5	74
41	3D-HST GRISM SPECTROSCOPY OF A GRAVITATIONALLY LENSED, LOW-METALLICITY STARBURST GALAXY AT <i>z</i> = 1.847. Astrophysical Journal Letters, 2012, 758, L17.	8.3	73
42	A massive galaxy in its core formation phase three billion years after the Big Bang. Nature, 2014, 513, 394-397.	27.8	71
43	Discovery of a Dark, Massive, ALMA-only Galaxy at zÂâ^1⁄4Â5–6 in a Tiny 3 mm Survey. Astrophysical Journal, 2019, 884, 154.	4.5	70
44	Star Formation at z = 2.481 in the Lensed Galaxy SDSS J1110+6459: Star Formation Down to 30 pc Scales ^{â^—} . Astrophysical Journal Letters, 2017, 843, L21.	8.3	66
45	THE AGE SPREAD OF QUIESCENT GALAXIES WITH THE NEWFIRM MEDIUM-BAND SURVEY: IDENTIFICATION OF THE OLDEST GALAXIES OUT TO <i>z</i> â ⁻¹ /4 2. Astrophysical Journal, 2010, 719, 1715-1732.	4.5	64
46	THE SIZES OF MASSIVE QUIESCENT AND STAR-FORMING GALAXIES AT <i>z</i> â^¼ 4 WITH ZFOURGE AND CANDELS. Astrophysical Journal Letters, 2015, 808, L29.	8.3	64
47	HFF-DeepSpace Photometric Catalogs of the 12 <i>Hubble</i> Frontier Fields, Clusters, and Parallels: Photometry, Photometric Redshifts, and Stellar Masses. Astrophysical Journal, Supplement Series, 2018, 235, 14.	7.7	63
48	On the importance of using appropriate spectral models to derive physical properties of galaxies at 0.7Â<ÂzÂ<Â2.8. Monthly Notices of the Royal Astronomical Society, 2015, 447, 786-805.	4.4	61
49	RECONCILING THE OBSERVED STAR-FORMING SEQUENCE WITH THE OBSERVED STELLAR MASS FUNCTION. Astrophysical Journal, 2015, 798, 115.	4.5	59
50	Spatially resolved star formation and inside-out quenching in the TNG50 simulation and 3D-HST observations. Monthly Notices of the Royal Astronomical Society, 2021, 508, 219-235.	4.4	56
51	Hα AND 4000 à BREAK MEASUREMENTS FOR â^¼3500 <i>K</i> -SELECTED GALAXIES AT 0.5 < <i>z</i> < 2.0 Astrophysical Journal, 2011, 743, 168.). 4.5	55
52	The Intrinsic Characteristics of Galaxies on the SFR–M _{â^—} Plane at 1.2 < z < 4: I. The Correlation between Stellar Age, Central Density, and Position Relative to the Main Sequence. Astrophysical Journal, 2018, 853, 131.	4.5	50
53	THE EVOLUTION OF THE FRACTIONS OF QUIESCENT AND STAR-FORMING GALAXIES AS A FUNCTION OF STELLAR MASS SINCE $z = \hat{A}3$: INCREASING IMPORTANCE OF MASSIVE, DUSTY STAR-FORMING GALAXIES IN THE EARLY UNIVERSE. Astrophysical Journal Letters, 2016, 827, L25.	8.3	49
54	THE RADIAL DISTRIBUTION OF STAR FORMATION IN GALAXIES AT <i>z</i> â^¼ 1 FROM THE 3D-HST SURVEY. Astrophysical Journal Letters, 2013, 763, L16.	8.3	48

#	Article	IF	CITATIONS
55	Molecular Gas Contents and Scaling Relations for Massive, Passive Galaxies at Intermediate Redshifts from the LEGA-C Survey. Astrophysical Journal, 2018, 860, 103.	4.5	48
56	THE RELATION BETWEEN GALAXY STRUCTURE AND SPECTRAL TYPE: IMPLICATIONS FOR THE BUILDUP OF THE QUIESCENT GALAXY POPULATION AT 0.5Â<Â2Â<Â2.0. Astrophysical Journal Letters, 2016, 817, L21.	8.3	47
57	The Hubble Legacy Field GOODS-S Photometric Catalog. Astrophysical Journal, Supplement Series, 2019, 244, 16.	7.7	47
58	THE STRUCTURAL EVOLUTION OF MILKY-WAY-LIKE STAR-FORMING GALAXIES SINCE <i>z </i> à ¹ /4 1.3. Astrophysica Journal, 2013, 778, 115.	al 4.5	45
59	Strong Lens Models for 37 Clusters of Galaxies from the SDSS Giant Arcs Survey*. Astrophysical Journal, Supplement Series, 2020, 247, 12.	7.7	45
60	WHAT ARE THE PROGENITORS OF COMPACT, MASSIVE, QUIESCENT GALAXIES AT <i>z</i> = 2.3? THE POPULATION OF MASSIVE GALAXIES AT <i>z</i> > 3 FROM NMBS AND CANDELS. Astrophysical Journal, 2013, 768, 92.	4.5	44
61	The Mass, Color, and Structural Evolution of Today's Massive Galaxies Since zÂâ^1⁄4Â5. Astrophysical Journal, 2017, 837, 147.	4.5	44
62	LOW GAS FRACTIONS CONNECT COMPACT STAR-FORMING GALAXIES TO THEIR zÂâ^¼Â2 QUIESCENT DESCENDANTS. Astrophysical Journal, 2016, 832, 19.	4.5	42
63	CONFIRMATION OF SMALL DYNAMICAL AND STELLAR MASSES FOR EXTREME EMISSION LINE GALAXIES AT <i>z</i> â ¹ /4 2. Astrophysical Journal Letters, 2013, 778, L22.	8.3	41
64	Extending the evolution of the stellar mass–size relation at <i>z</i> â‰⊉ to low stellar mass galaxies from HFF and CANDELS. Monthly Notices of the Royal Astronomical Society, 2021, 506, 928-956.	4.4	40
65	AGES OF MASSIVE GALAXIES AT 0.5 > z > 2.0 FROM 3D-HST REST-FRAME OPTICAL SPECTROSCOPY. Astrophysical Journal, 2016, 822, 1.	4.5	37
66	ULTRA-DEEP K _S -BAND IMAGING OF THE HUBBLE FRONTIER FIELDS. Astrophysical Journal, Supplement Series, 2016, 226, 6.	7.7	37
67	THE EVOLUTION OF THE REST-FRAME <i>V</i> BAND LUMINOSITY FUNCTION FROM <i>z</i> = 4: A CONSTANT FAINT-END SLOPE OVER THE LAST 12 Gyr OF COSMIC HISTORY. Astrophysical Journal, 2012, 748, 126.	4.5	36
68	ALMA Measures Rapidly Depleted Molecular Gas Reservoirs in Massive Quiescent Galaxies at z â^¼ 1.5. Astrophysical Journal, 2021, 908, 54.	4.5	36
69	Quenching of star formation from a lack of inflowing gas to galaxies. Nature, 2021, 597, 485-488.	27.8	36
70	FIRST RESULTS FROM THE VIRIAL SURVEY: THE STELLAR CONTENT OF <i>UVJ</i> -SELECTED QUIESCENT GALAXIES AT 1.5 < <i>z</i> < 2 FROM KMOS. Astrophysical Journal Letters, 2015, 804, L4.	8.3	35
71	Extremely Low Molecular Gas Content in a Compact, Quiescent Galaxy at zÂ=Â1.522. Astrophysical Journal Letters, 2019, 873, L19.	8.3	35
72	A gravitationally lensed supernova with an observable two-decade time delay. Nature Astronomy, 2021, 5, 1118-1125.	10.1	33

KATHERINE E WHITAKER

#	Article	IF	CITATIONS
73	The interstellar medium of quiescent galaxies and its evolution with time. Astronomy and Astrophysics, 2021, 647, A33.	5.1	32
74	Star Formation at zÂ=Â2.481 in the Lensed Galaxy SDSS J1110+6459. II. What is Missed at the Normal Resolution of the Hubble Space Telescope?. Astrophysical Journal, 2017, 843, 79.	4.5	30
75	Star Formation at zÂ=Â2.481 in the Lensed Galaxy SDSS J1110Â=Â6459. I. Lens Modeling and Source Reconstruction ^{â^—} . Astrophysical Journal, 2017, 843, 78.	4.5	28
76	An XMM-Newton and Chandra study of the starburst galaxy IC 10. Monthly Notices of the Royal Astronomical Society, 2005, 362, 1065-1077.	4.4	26
77	GALAXY ENVIRONMENTS OVER COSMIC TIME: THE NON-EVOLVING RADIAL GALAXY DISTRIBUTIONS AROUND MASSIVE GALAXIES SINCE <i>z</i> = 1.6. Astrophysical Journal, 2013, 769, 31.	4.5	26
78	LENS MODEL AND TIME DELAY PREDICTIONS FOR THE SEXTUPLY LENSED QUASAR SDSS J2222+2745*. Astrophysical Journal, 2017, 835, 5.	4.5	26
79	LEVERAGING 3D-HST GRISM REDSHIFTS TO QUANTIFY PHOTOMETRIC REDSHIFT PERFORMANCE. Astrophysical Journal, 2016, 822, 30.	4.5	26
80	The Number Density Evolution of Extreme Emission Line Galaxies in 3D-HST: Results from a Novel Automated Line Search Technique for Slitless Spectroscopy*. Astrophysical Journal, 2018, 854, 29.	4.5	24
81	RESOLVED STAR FORMATION ON SUB-GALACTIC SCALES IN A MERGER AT <i>z</i> = 1.7. Astrophysical Journal, 2014, 790, 143.	4.5	23
82	Evidence for Inside-out Galaxy Growth and Quenching of a zÂâ^1⁄4Â2 Compact Galaxy From High-resolution Molecular Gas Imaging. Astrophysical Journal, 2019, 883, 81.	4.5	22
83	Early Science with the Large Millimeter Telescope: Detection of Dust Emission in Multiple Images of a Normal Galaxy at z >Â4 Lensed by a Frontier Fields Cluster. Astrophysical Journal, 2017, 838, 137.	4.5	18
84	Recent Star Formation in a Massive Slowly Quenched Lensed Quiescent Galaxy at z = 1.88. Astrophysical Journal Letters, 2021, 907, L8.	8.3	18
85	High-redshift Massive Quiescent Galaxies Are as Flat as Star-forming Galaxies: The Flattening of Galaxies and the Correlation with Structural Properties in CANDELS/3D-HST. Astrophysical Journal, 2019, 871, 76.	4.5	17
86	Early Science with the Large Millimeter Telescope: Constraining the Gas Fraction of a Compact Quiescent Galaxy at <i>z</i> = 1.883. Astrophysical Journal Letters, 2021, 910, L7.	8.3	17
87	High Molecular-gas to Dust Mass Ratios Predicted in Most Quiescent Galaxies. Astrophysical Journal Letters, 2021, 922, L30.	8.3	17
88	The spatial extent and distribution of star formation in 3D-HST mergers at z $\hat{a}^{1}/4$ 1.5. Monthly Notices of the Royal Astronomical Society, 2013, 432, 285-300.	4.4	16
89	THE RELATION BETWEEN [O III] / H $\hat{1}^2$ AND SPECIFIC STAR FORMATION RATE IN GALAXIES AT z $\hat{a}^{-1}/4$ 2. Astrophysical Journal Letters, 2016, 828, L11.	8.3	16
90	EXPLORING THE CHEMICAL LINK BETWEEN LOCAL ELLIPTICALS AND THEIR HIGH-REDSHIFT PROGENITORS. Astrophysical Journal Letters, 2013, 778, L24.	8.3	15

KATHERINE E WHITAKER

#	Article	IF	CITATIONS
91	REQUIEM-2D Methodology: Spatially Resolved Stellar Populations of Massive Lensed Quiescent Galaxies from Hubble Space Telescope 2D Grism Spectroscopy. Astrophysical Journal, 2020, 900, 184.	4.5	15
92	Quenching and the UVJ Diagram in the SIMBA Cosmological Simulation. Astrophysical Journal, 2022, 929, 94.	4.5	14
93	A Comparison of Rest-frame Ultraviolet and Optical Emission-line Diagnostics in the Lensed Galaxy SDSSÂJ1723+3411 at Redshift zÂ=Â1.3293. Astrophysical Journal, 2021, 908, 154.	4.5	12
94	Diagnosing DASH: A Catalog of Structural Properties for the COSMOS-DASH Survey. Astrophysical Journal, 2022, 925, 34.	4.5	12
95	HST F160W Imaging of Very Massive Galaxies at 1.5Â<ÂzÂ<Â3.0: Diversity of Structures and the Effect of Close Pairs on Number Density Estimates. Astrophysical Journal, 2019, 871, 201.	4.5	11
96	Complete IRAC Mapping of the CFHTLS-DEEP, MUSYC, and NMBS-II Fields. Publications of the Astronomical Society of the Pacific, 2018, 130, 124501.	3.1	10
97	Toward Precise Galaxy Evolution: A Comparison between Spectral Indices of z â^1⁄41 Galaxies in the IllustrisTNG Simulation and the LEGA-C Survey. Astronomical Journal, 2021, 162, 201.	4.7	9
98	Near-infrared Spectroscopy of Five Ultra-massive Galaxies at 1.7Â<ÂzÂ<Â2.7. Astrophysical Journal, 2017, 838, 57.	4.5	8
99	An X-ray detection of star formation in a highly magnified giant arc. Nature Astronomy, 2020, 4, 159-166.	10.1	8
100	Spatial Variation in Strong Line Ratios and Physical Conditions in Two Strongly Lensed Galaxies at zÂâ^¼Â1.4. Astrophysical Journal, 2021, 916, 50.	4.5	8
101	Ubiquitous [O ii] Emission in Quiescent Galaxies at z â‰^ 0.85 from the LEGA-C Survey*. Astrophysical Journal, 2021, 923, 18.	4.5	8
102	X-RAY PROPERTIES OF K-SELECTED GALAXIES AT 0.5 < <i>z</i> < 2.0: INVESTIGATING TRENDS WITH STELLAR MASS, REDSHIFT AND SPECTRAL TYPE. Astrophysical Journal, 2014, 783, 25.	4.5	7
103	An ALMA survey of the SCUBA-2 cosmology legacy survey UKIDSS/UDS field: Dust attenuation in high-redshift Lyman-break galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4927-4944.	4.4	7
104	Three Dusty Star-forming Galaxies at zÂâ^¼Â1.5: Mergers and Disks on the Main Sequence. Astrophysical Journal, 2020, 892, 104.	4.5	6
105	ALMA Measures Molecular Gas Reservoirs Comparable to Field Galaxies in a Low-mass Galaxy Cluster at z = 1.3. Astrophysical Journal, 2022, 929, 35.	4.5	6
106	3D-DASH: The Widest Near-infrared Hubble Space Telescope Survey. Astrophysical Journal, 2022, 933, 129.	4.5	6
107	EVIDENCE FOR NON-STELLAR REST-FRAME NEAR-IR EMISSION ASSOCIATED WITH INCREASED STAR FORMATION IN GALAXIES AT zÂâ^¼Â1. Astrophysical Journal Letters, 2016, 819, L4.	8.3	5
108	Evidence for Non-smooth Quenching in Massive Galaxies at z â^¼ 1. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	5

#	Article	IF	CITATIONS
109	Lens Model and Source Reconstruction Reveal the Morphology and Star Formation Distribution in the Cool Spiral LIRG SGAS J143845.1+145407. Astrophysical Journal, 2019, 875, 18.	4.5	3
110	Molecular Gas in a Gravitationally Lensed Galaxy Group at $z = 2.9$. Astrophysical Journal, 2021, 917, 79.	4.5	3
111	Resolved Stellar Mass Maps of Galaxies in the Hubble Frontier Fields: Evidence for Mass Dependency in Environmental Quenching. Astrophysical Journal, 2022, 933, 30.	4.5	3
112	CLIMBER: Galaxy–Halo Connection Constraints from Next-generation Surveys. Astrophysical Journal, 2022, 925, 180.	4.5	1