Matthew M Chumchal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1033942/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Biomagnification of Mercury in Aquatic Food Webs: A Worldwide Meta-Analysis. Environmental Science & Technology, 2013, 47, 13385-13394.	4.6	686
2	Mercury speciation and biomagnification in the food web of Caddo Lake, Texas and Louisiana, USA, a subtropical freshwater ecosystem. Environmental Toxicology and Chemistry, 2011, 30, 1153-1162.	2.2	79
3	Sulfur stable isotope indicators of residency in estuarine fish. Limnology and Oceanography, 2011, 56, 1563-1576.	1.6	71
4	Biomass-dependent effects of common carp on water quality in shallow ponds. Hydrobiologia, 2005, 545, 271-277.	1.0	63
5	Methyl mercury and stable isotopes of nitrogen reveal that a terrestrial spider has a diet of emergent aquatic insects. Environmental Toxicology and Chemistry, 2014, 33, 2506-2509.	2.2	60
6	Effects of Fish on Emergent Insect-Mediated Flux of Methyl Mercury across a Gradient of Contamination. Environmental Science & amp; Technology, 2013, 47, 1614-1619.	4.6	58
7	Mercury bioaccumulation in bats reflects dietary connectivity to aquatic food webs. Environmental Pollution, 2018, 233, 1076-1085.	3.7	53
8	Ecological factors regulating mercury contamination of fish from Caddo Lake, Texas, USA. Environmental Toxicology and Chemistry, 2009, 28, 962-972.	2.2	52
9	Effects of Mercury Deposition and Coniferous Forests on the Mercury Contamination of Fish in the South Central United States. Environmental Science & amp; Technology, 2013, 47, 1274-1279.	4.6	45
10	An environmental problem hidden in plain sight? Small Humanâ€made ponds, emergent insects, and mercury contamination of biota in the Great Plains. Environmental Toxicology and Chemistry, 2015, 34, 1197-1205.	2.2	45
11	Predictors and immunological correlates of sublethal mercury exposure in vampire bats. Royal Society Open Science, 2017, 4, 170073.	1.1	45
12	Interrelationships between phosphorus loading and common carp in the regulation of phytoplankton biomass. Archiv Für Hydrobiologie, 2004, 161, 147-158.	1.1	39
13	Mercury bioaccumulation in estuarine food webs. Ecological Applications, 2012, 22, 606-623.	1.8	39
14	Hgâ€contaminated terrestrial spiders pose a potential risk to songbirds at Caddo Lake (Texas/Louisiana,) Tj ETQo	10 0 0 rgBT	- /gyerlock 10
15	Mercury Concentrations in Fish from Lake Meredith, Texas: Implications for the Issuance of Fish Consumption Advisories. Environmental Monitoring and Assessment, 2006, 123, 249-258.	1.3	34
16	Laser Ablation ICP-MS Co-Localization of Mercury and Immune Response in Fish. Environmental Science & amp; Technology, 2011, 45, 8982-8988.	4.6	33
17	Habitatâ€Specific Differences in Mercury Concentration in a Top Predator from a Shallow Lake. Transactions of the American Fisheries Society, 2008, 137, 195-208.	0.6	32

18Determination of mercury speciation in fish tissue with a direct mercury analyzer. Environmental
Toxicology and Chemistry, 2013, 32, 1237-1241.2.232

Маттнеж М Снимсна

#	Article	IF	CITATIONS
19	To Co-Author or Not to Co-Author: How to Write, Publish, and Negotiate Issues of Authorship with Undergraduate Research Students. Science Signaling, 2009, 2, tr3.	1.6	28
20	Bottomâ€up nutrient and topâ€down fish impacts on insectâ€mediated mercury flux from aquatic ecosystems. Environmental Toxicology and Chemistry, 2013, 32, 612-618.	2.2	27
21	Effects of fish on mercury contamination of macroinvertebrate communities of Grassland ponds. Environmental Toxicology and Chemistry, 2012, 31, 870-876.	2.2	22
22	Relationship Between Methylmercury Contamination and Proportion of Aquatic and Terrestrial Prey in Diets of Shoreline Spiders. Environmental Toxicology and Chemistry, 2019, 38, 2503-2508.	2.2	22
23	Landscapeâ€level patterns of mercury contamination of fish in North Texas, USA. Environmental Toxicology and Chemistry, 2011, 30, 2041-2045.	2.2	20
24	Abundance and size distribution of permanent and temporary farm ponds in the southeastern Great Plains. Inland Waters, 2016, 6, 258-264.	1.1	19
25	Seasonality of odonateâ€mediated methylmercury flux from permanent and semipermanent ponds and potential risk to redâ€winged blackbirds (<i>Agelaius phoeniceus</i>). Environmental Toxicology and Chemistry, 2017, 36, 2833-2837.	2.2	19
26	Regional variation in mercury and stable isotopes of red snapper (<i>Lutjanus campechanus</i>) in the northern gulf of Mexico, USA. Environmental Toxicology and Chemistry, 2013, 32, 434-441.	2.2	18
27	Use of preserved museum fish to evaluate historical and current mercury contamination in fish from two rivers in Oklahoma, USA. Environmental Monitoring and Assessment, 2010, 161, 509-516.	1.3	17
28	Disentangling interactions among mercury, immunity and infection in a Neotropical bat community. Journal of Applied Ecology, 2021, 58, 879-889.	1.9	15
29	Use of Riparian Spiders as Sentinels of Persistent and Bioavailable Chemical Contaminants in Aquatic Ecosystems: A Review. Environmental Toxicology and Chemistry, 2022, 41, 499-514.	2.2	15
30	Mercury contamination in bats from the central United States. Environmental Toxicology and Chemistry, 2018, 37, 160-165.	2.2	13
31	Mercury Concentrations in Birds from Two Atmospherically Contaminated Sites in North Texas, USA. Archives of Environmental Contamination and Toxicology, 2015, 69, 390-398.	2.1	10
32	Disparity between state fish consumption advisory systems for methylmercury and US Environmental Protection Agency recommendations: A case study of the south central United States. Environmental Toxicology and Chemistry, 2016, 35, 247-251.	2.2	10
33	Mercury contamination of the fish community of a semiâ€arid and arid river system: Spatial variation and the influence of environmental gradients. Environmental Toxicology and Chemistry, 2010, 29, 1762-1772.	2.2	9
34	Land use, season, and parasitism predict metal concentrations in Australian flying fox fur. Science of the Total Environment, 2022, 841, 156699.	3.9	9
35	Effect of Trawling and Habitat on Mercury Concentration in Juvenile Red Snapper from the Northern Gulf of Mexico. Transactions of the American Fisheries Society, 2008, 137, 1839-1850.	0.6	8
36	Recovery of aquatic insectâ€mediated methylmercury flux from ponds following drying disturbance. Environmental Toxicology and Chemistry, 2017, 36, 1986-1990.	2.2	7

MATTHEW M CHUMCHAL

#	Article	IF	CITATIONS
37	Correspondence between mercury and stable isotopes in high Arctic marine and terrestrial avian species from northwest Greenland. Polar Biology, 2018, 41, 1475-1491.	0.5	7
38	Mislabelling and high mercury content hampers the efforts of market-based seafood initiatives in Peru. Scientific Reports, 2020, 10, 20390.	1.6	7
39	Factors influencing mercury accumulation in three species of forage fish from Caddo Lake, Texas, USA. Journal of Environmental Sciences, 2010, 22, 1158-1163.	3.2	6
40	Effect of Body Size on Methylmercury Concentrations in Shoreline Spiders: Implications for Their Use as Sentinels. Environmental Toxicology and Chemistry, 2021, 40, 1149-1154.	2.2	6
41	Spatial variability in the speciation and bioaccumulation of mercury in an arid subtropical reservoir ecosystem. Environmental Toxicology and Chemistry, 2011, 30, 2300-2311.	2.2	5
42	Seasonality of dipteranâ€mediated methylmercury flux from ponds. Environmental Toxicology and Chemistry, 2018, 37, 1846-1851.	2.2	5
43	Spatial patterns of mercury contamination and associated risk to piscivorous wading birds of the south central United States. Environmental Toxicology and Chemistry, 2019, 38, 160-166.	2.2	5
44	Ecological Factors Controlling Insect-Mediated Methyl Mercury Flux from Aquatic to Terrestrial Ecosystems: Lessons Learned from Mesocosm and Pond Experiments. , 2020, , 17-33.		4
45	Molecular diet analysis of the marine fish-eating bat (<i>Myotis vivesi</i>) and potential mercury exposure. Canadian Journal of Zoology, 2021, 99, 752-759.	0.4	3
46	Mud Dauber Nests as Sources of Spiders in Mercury Monitoring Studies. Environmental Toxicology and Chemistry, 2021, 40, 1335-1340.	2.2	1
47	Sentinel Riparian Spiders Predict Mercury Contamination of Riverine Fish. Environmental Toxicology and Chemistry, 2022, , .	2.2	0