
Susana Valencia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1033928/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer–Villiger oxidations. Nature, 2001, 412, 423-425.	13.7	917
2	Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 2004, 431, 287-290.	13.7	522
3	Water-resistant solid Lewis acid catalysts: Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by tin-beta zeolite. Journal of Catalysis, 2003, 215, 294-304.	3.1	395
4	Al-Free Sn-Beta Zeolite as a Catalyst for the Selective Reduction of Carbonyl Compounds (Meerweinâ^'Ponndorfâ^'Verley Reaction). Journal of the American Chemical Society, 2002, 124, 3194-3195.	6.6	392
5	Natural gas treating by selective adsorption: Material science and chemical engineering interplay. Chemical Engineering Journal, 2009, 155, 553-566.	6.6	386
6	Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science, 2017, 358, 1068-1071.	6.0	304
7	Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation by the combination of theoretical and experimental studies. Journal of Catalysis, 2005, 234, 111-118.	3.1	280
8	Pure Polymorph C of Zeolite Beta Synthesized by Using Framework Isomorphous Substitution as a Structure-Directing Mechanism. Angewandte Chemie - International Edition, 2001, 40, 2277-2280.	7.2	270
9	A zeolite with interconnected 8-, 10- and 12-ring pores and its unique catalytic selectivity. Nature Materials, 2003, 2, 493-497.	13.3	252
10	Spontaneous nucleation and growth of pure silica zeolite-? free of connectivity defects. Chemical Communications, 1996, , 2365.	2.2	251
11	New Insights on CO ₂ â^Methane Separation Using LTA Zeolites with Different Si/Al Ratios and a First Comparison with MOFs. Langmuir, 2010, 26, 1910-1917.	1.6	244
12	Oxidation of Olefins with Hydrogen Peroxide and tert-Butyl Hydroperoxide on Ti-Beta Catalyst. Journal of Catalysis, 1995, 152, 18-24.	3.1	202
13	Uniform Catalytic Site in Sn-β-Zeolite Determined Using X-ray Absorption Fine Structure. Journal of the American Chemical Society, 2005, 127, 12924-12932.	6.6	147
14	Zeolite Rho: a highly selective adsorbent for CO ₂ /CH ₄ separation induced by a structural phase modification. Chemical Communications, 2012, 48, 215-217.	2.2	143
15	Synthesis and catalytic activity of aluminium-free zeolite Ti- \hat{l}^2 oxidation catalysts. Chemical Communications, 1996, , 1339-1340.	2.2	123
16	Water Resistant, Catalytically Active Nb and Ta Isolated Lewis Acid Sites, Homogeneously Distributed by Direct Synthesis in a Beta Zeolite. Journal of Physical Chemistry C, 2009, 113, 11306-11315.	1.5	110
17	Acylation of Toluene with Acetic Anhydride over Beta Zeolites: Influence of Reaction Conditions and Physicochemical Properties of the Catalyst. Journal of Catalysis, 2000, 195, 161-168.	3.1	107
18	Cation Gating and Relocation during the Highly Selective "Trapdoor―Adsorption of CO ₂ on Univalent Cation Forms of Zeolite Rho. Chemistry of Materials, 2014, 26, 2052-2061.	3.2	96

SUSANA VALENCIA

#	Article	IF	CITATIONS
19	Pure silica ITQ-32 zeolite allows separation of linear olefins from paraffins. Chemical Communications, 2007, , 1233-1235.	2.2	85
20	Synthesis of pure polymorph C of Beta zeolite in a fluoride-free system. Chemical Communications, 2001, , 1486-1487.	2.2	83
21	Reactivity in the confined spaces of zeolites: the interplay between spectroscopy and theory to develop structure–activity relationships for catalysis. Physical Chemistry Chemical Physics, 2009, 11, 2876.	1.3	81
22	Computational and Experimental Approach to the Role of Structure-Directing Agents in the Synthesis of Zeolites: The Case of Cyclohexyl Alkyl Pyrrolidinium Salts in the Synthesis of β, EU-1, ZSM-11, and ZSM-12 Zeolites. Journal of Physical Chemistry B, 2003, 107, 5432-5440.	1.2	80
23	Determination of the Pore Topology of Zeolite IM-5 by Means of Catalytic Test Reactions and Hydrocarbon Adsorption Measurements. Journal of Catalysis, 2000, 189, 382-394.	3.1	79
24	Direct synthesis of a 9×109×10 member ring zeolite (Al-ITQ-13): A highly shape-selective catalyst for catalytic cracking. Journal of Catalysis, 2006, 238, 79-87.	3.1	79
25	Synthesis and Structure of the Bidimensional Zeolite ITQ-32 with Small and Large Pores. Journal of the American Chemical Society, 2005, 127, 11560-11561.	6.6	72
26	IM-5: A Highly Thermal and Hydrothermal Shape-Selective Cracking Zeolite. Journal of Catalysis, 2002, 206, 125-133.	3.1	63
27	A New United Atom Force Field for Adsorption of Alkenes in Zeolites. Journal of Physical Chemistry C, 2008, 112, 2492-2498.	1.5	62
28	Titanium-Containing Zeolites and Microporous Molecular Sieves as Photovoltaic Solar Cells. ChemPhysChem, 2007, 8, 1115-1119.	1.0	56
29	Catalytic behavior of hybrid Co/SiO2-(medium-pore) zeolite catalysts during the one-stage conversion of syngas to gasoline. Applied Catalysis A: General, 2008, 346, 117-125.	2.2	55
30	The benefit of multipore zeolites: Catalytic behaviour of zeolites with intersecting channels of different sizes for alkylation reactions. Journal of Catalysis, 2009, 268, 9-17.	3.1	54
31	The impact of zeolite pore structure on the catalytic behavior of CuZnAl/zeolite hybrid catalysts for the direct DME synthesis. Applied Catalysis A: General, 2013, 468, 102-111.	2.2	53
32	Tuning the Adsorption Properties of Zeolites as Adsorbents for CO ₂ Separation: Best Compromise between the Working Capacity and Selectivity. Industrial & Engineering Chemistry Research, 2014, 53, 9860-9874.	1.8	51
33	A highly stable and hierarchical tetrathiafulvalene-based metal–organic framework with improved performance as a solid catalyst. Chemical Science, 2018, 9, 2413-2418.	3.7	50
34	On the researching of a new zeolite structure for the selective catalytic reduction of NO. Journal of Molecular Catalysis A, 2000, 162, 175-189.	4.8	49
35	Analysis of the ITQ-12 Zeolite Performance in Propaneâ° Propylene Separations Using a Combination of Experiments and Molecular Simulations. Journal of Physical Chemistry C, 2010, 114, 14907-14914.	1.5	47
36	Synthesis of a Novel Zeolite through a Pressureâ€Induced Reconstructive Phase Transition Process. Angewandte Chemie - International Edition, 2013, 52, 10458-10462.	7.2	45

SUSANA VALENCIA

#	Article	IF	CITATIONS
37	A new highly efficient method for the synthesis of Ti-Beta zeolite oxidation catalyst. Applied Catalysis A: General, 1995, 133, L185-L189.	2.2	44
38	Preparation of ITQ-29 (Al-free zeolite A) membranes. Microporous and Mesoporous Materials, 2008, 110, 303-309.	2.2	39
39	LTA/Poly(1â€ŧrimethylsilylâ€1â€propyne) Mixedâ€Matrix Membranes for Highâ€Temperature CO ₂ /N ₂ Separation. Chemical Engineering and Technology, 2015, 38, 658-666.	0.9	39
40	Preparation and characterization of ITQ-29/polysulfone mixed-matrix membranes for gas separation: Effect of zeolite composition and crystal size. Chemical Engineering Science, 2012, 73, 116-122.	1.9	38
41	Highly fluorescent C-dots obtained by pyrolysis of quaternary ammonium ions trapped in all-silica ITQ-29 zeolite. Nanoscale, 2015, 7, 1744-1752.	2.8	38
42	Permselectivity improvement in membranes for CO2/N2 separation. Separation and Purification Technology, 2016, 157, 102-111.	3.9	37
43	Structure-reactivity relationship for aromatics transalkylation and isomerization process with TNU-9, MCM-22 and ZSM-5 zeolites, and their industrial implications. Applied Catalysis A: General, 2011, 393, 257-268.	2.2	31
44	Oriented CoSAPOâ€5 Membranes by Microwaveâ€Enhanced Growth on TiO ₂ â€Coated Porous Alumina. Angewandte Chemie - International Edition, 2012, 51, 2470-2473.	7.2	30
45	Intensified Biobutanol Recovery by using Zeolites with Complementary Selectivity. ChemSusChem, 2017, 10, 2968-2977.	3.6	30
46	Selective hydration of dihydromyrcene to dihydromyrcenol over H-beta zeolite Applied Catalysis A: General, 2000, 203, 251-258.	2.2	28
47	Mixed Matrix Membranes for O2/N2 Separation: The Influence of Temperature. Membranes, 2016, 6, 28.	1.4	27
48	Inelastic Neutron Scattering Study on the Location of BrÃ,nsted Acid Sites in High Silica LTA Zeolite. Journal of Physical Chemistry C, 2016, 120, 24904-24909.	1.5	25
49	Synthesis and structure determination <i>via</i> ultra-fast electron diffraction of the new microporous zeolitic germanosilicate ITQ-62. Chemical Communications, 2018, 54, 2122-2125.	2.2	23
50	A new synthesis method for the preparation of ITQ-7 zeolites and the characterisation of the resulting materials. Comptes Rendus Chimie, 2005, 8, 369-378.	0.2	22
51	Critical Role of Dynamic Flexibility in Geâ€Containing Zeolites: Impact on Diffusion. Chemistry - A European Journal, 2016, 22, 10036-10043.	1.7	22
52	Unusually Low Heat of Adsorption of CO2 on AlPO and SAPO Molecular Sieves. Frontiers in Chemistry, 2020, 8, 588712.	1.8	21
53	Study of Short-Chain Alcohol and Alcohol–Water Adsorption in MEL and MFI Zeolites. Langmuir, 2018, 34, 12739-12750.	1.6	20
54	Influence of the solvent on the titanium beta catalyzed oxidation of phenylethylenes without carbon-carbon double bond cleavage. Applied Catalysis A: General, 1995, 128, L7-L11.	2.2	15

SUSANA VALENCIA

#	Article	IF	CITATIONS
55	Gas confinement in compartmentalized coordination polymers for highly selective sorption. Chemical Science, 2017, 8, 3109-3120.	3.7	15
56	Influence of the Synthesis Procedure and Chemical Composition on the Activity of Titanium in Ti-Beta Catalysts. Studies in Surface Science and Catalysis, 1994, 82, 531-540.	1.5	14
57	A Career in Catalysis: Avelino Corma. ACS Catalysis, 2022, 12, 7054-7123.	5.5	14
58	Zeolites and Other Adsorbents. Green Energy and Technology, 2019, , 173-208.	0.4	13
59	Insights into Adsorption of Linear, Monobranched, and Dibranched Alkanes on Pure Silica STW Zeolite as a Promising Material for Their Separation. Journal of Physical Chemistry C, 2020, 124, 26821-26829.	1.5	11
60	Capturing renewable isobutanol from model vapor mixtures using an all-silica beta zeolite. Chemical Engineering Journal, 2021, 412, 128658.	6.6	9
61	Title is missing!. Topics in Catalysis, 2000, 11/12, 401-407.	1.3	8
62	Isostructural compartmentalized spin-crossover coordination polymers for gas confinement. Inorganic Chemistry Frontiers, 2016, 3, 808-813.	3.0	8
63	Estimating CO2/N2 Permselectivity through Si/Al = 5 Small-Pore Zeolites/PTMSP Mixed Matrix Membranes: Influence of Temperature and Topology. Membranes, 2018, 8, 32.	1.4	8
64	ITQâ€69: A Germanium ontaining Zeolite and its Synthesis, Structure Determination, and Adsorption Properties. Angewandte Chemie - International Edition, 2021, 60, 11745-11750.	7.2	8
65	Charge matching between the occluded organic cations and zeolite framework as structure directing effect in zeolite synthesis. Studies in Surface Science and Catalysis, 2008, 174, 249-252.	1.5	7
66	Adsorption of Alkanes in Zeolites LTA and FAU: Quasi-Equilibrated Thermodesorption Supported by Molecular Simulations. Journal of Physical Chemistry C, 2019, 123, 29665-29678.	1.5	7
67	Synthesis of furan derivatives via cascade-type reactions catalyzed by solid acids. Catalysis Today, 2015, 257, 305-317.	2.2	6
68	Large pore ti-beta zeolite with very low aluminium content: An active and selective catalyst for oxidations using hydrogen peroxide. Industrial Chemistry Library, 1996, 8, 391-404.	0.1	5
69	Multiscale exploration of hydrocarbon adsorption and hopping through ZSM-5 channels – from Monte Carlo modelling to experiment. Physical Chemistry Chemical Physics, 2021, 23, 2981-2990.	1.3	4
70	Preparation of Continuous Highly Hydrophobic Pure Silica ITQ-29 Zeolite Layers on Alumina Supports. Molecules, 2020, 25, 4150.	1.7	3
71	A new photochemical based route for the preparation of organic structure directing agents useful for zeolite synthesis. Studies in Surface Science and Catalysis, 2007, 170, 330-337.	1.5	2
72	ITQâ€69: A Germaniumâ€Containing Zeolite and its Synthesis, Structure Determination, and Adsorption Properties. Angewandte Chemie, 2021, 133, 11851-11856.	1.6	1

#	Article	IF	CITATIONS
73	Supramolecular Self-Assembled Molecules as Organic Directing Agent for Synthesis of Zeolites ChemInform, 2004, 35, no.	0.1	0
74	Characterization of LTA- and CHA- type zeolites by means of solid state NMR. Studies in Surface Science and Catalysis, 2008, 174, 989-992.	1.5	0
75	A Multi-Nuclear MAS-NMR Study on the Structural Properties of Silicalite-1 Zeolite Synthesized Using N- and P-Based Organic Structure Directing Agents. Applied Sciences (Switzerland), 2021, 11, 6850.	1.3	Ο