Andrew G Clark

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1033738/andrew-g-clark-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

336 51,474 224 93 h-index g-index citations papers 60,229 369 10.5 7.33 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
336	Migration restores hybrid incompatibility driven by mitochondrial-nuclear sexual conflict <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2022 , 289, 20212561	4.4	
335	Advancing discovery of risk-altering variants for complex diseases by functionally informed fine-mapping <i>Neuron</i> , 2022 , 110, 905-907	13.9	
334	Collective effects of human genomic variation on microbiome function Scientific Reports, 2022, 12, 383	8 9 .9	O
333	A homing suppression gene drive with multiplexed gRNAs maintains high drive conversion efficiency and avoids functional resistance alleles <i>G3: Genes, Genomes, Genetics</i> , 2022 ,	3.2	6
332	Experimental demonstration of tethered gene drive systems for confined population modification or suppression. <i>BMC Biology</i> , 2022 , 20,	7.3	4
331	Extent of myosin penetration within the actin cortex regulates cell surface mechanics. <i>Nature Communications</i> , 2021 , 12, 6511	17.4	3
330	The genetic architecture of DNA replication timing in human pluripotent stem cells. <i>Nature Communications</i> , 2021 , 12, 6746	17.4	4
329	Thousands of Qatari genomes inform human migration history and improve imputation of Arab haplotypes. <i>Nature Communications</i> , 2021 , 12, 5929	17.4	4
328	Ethnic Differences in Iron Status. <i>Advances in Nutrition</i> , 2021 , 12, 1838-1853	10	5
327	Dense time-course gene expression profiling of the Drosophila melanogaster innate immune response. <i>BMC Genomics</i> , 2021 , 22, 304	4.5	8
326	Genetically predicted serum vitamin D and COVID-19: a Mendelian randomisation study. <i>BMJ Nutrition, Prevention and Health</i> , 2021 , 4, 213-225	6.7	9
325	Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration. <i>Nature Cell Biology</i> , 2021 , 23, 745-757	23.4	26
324	Differences in Postmating Transcriptional Responses between Conspecific and Heterospecific Matings in Drosophila. <i>Molecular Biology and Evolution</i> , 2021 , 38, 986-999	8.3	5
323	Mutation Rate Variability across Human Y-Chromosome Haplogroups. <i>Molecular Biology and Evolution</i> , 2021 , 38, 1000-1005	8.3	0
322	Leveraging phenotypic variability to identify genetic interactions in human phenotypes. <i>American Journal of Human Genetics</i> , 2021 , 108, 49-67	11	10
321	Design and analysis of CRISPR-based underdominance toxin-antidote gene drives. <i>Evolutionary Applications</i> , 2021 , 14, 1052-1069	4.8	14
320	A polygenic-score-based approach for identification of gene-drug interactions stratifying breast cancer risk. <i>American Journal of Human Genetics</i> , 2021 , 108, 1752-1764	11	1

319	Suppression gene drive in continuous space can result in unstable persistence of both drive and wild-type alleles. <i>Molecular Ecology</i> , 2021 , 30, 1086-1101	5.7	21
318	Mitochondrial-Y chromosome epistasis in. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2020 , 287, 20200469	4.4	1
317	Demographic and genetic factors influence the abundance of infiltrating immune cells in human tissues. <i>Nature Communications</i> , 2020 , 11, 2213	17.4	11
316	Genome Diversity and the Origin of the Arabian Horse. <i>Scientific Reports</i> , 2020 , 10, 9702	4.9	14
315	Computational and experimental performance of CRISPR homing gene drive strategies with multiplexed gRNAs. <i>Science Advances</i> , 2020 , 6, eaaz0525	14.3	41
314	Performance analysis of novel toxin-antidote CRISPR gene drive systems. <i>BMC Biology</i> , 2020 , 18, 27	7.3	31
313	A toxin-antidote CRISPR gene drive system for regional population modification. <i>Nature Communications</i> , 2020 , 11, 1082	17.4	56
312	The evolutionary arms race between transposable elements and piRNAs in Drosophila melanogaster. <i>BMC Evolutionary Biology</i> , 2020 , 20, 14	3	9
311	Evolutionary Dynamics of Abundant 7-bp Satellites in the Genome of Drosophila virilis. <i>Molecular Biology and Evolution</i> , 2020 , 37, 1362-1375	8.3	11
310	Dissecting Fertility Functions of a Chromosome Genes with CRISPR. <i>Genetics</i> , 2020 , 214, 977-990	4	2
309	Hypothalamic transcriptome of tame and aggressive silver foxes (Vulpes vulpes) identifies gene expression differences shared across brain regions. <i>Genes, Brain and Behavior</i> , 2020 , 19, e12614	3.6	9
308	Dense sampling of bird diversity increases power of comparative genomics. <i>Nature</i> , 2020 , 587, 252-257	50.4	89
307	Interactions between the microbiome and mating influence the females transcriptional profile in Drosophila melanogaster. <i>Scientific Reports</i> , 2020 , 10, 18168	4.9	7
306	The seminal proteome and its role in postcopulatory sexual selection. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2020 , 375, 20200072	5.8	19
305	A CRISPR homing gene drive targeting a haplolethal gene removes resistance alleles and successfully spreads through a cage population. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 24377-24383	11.5	37
304	RepeatModeler2 for automated genomic discovery of transposable element families. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 9451-9457	11.5	268
303	Extensive disruption of protein interactions by genetic variants across the allele frequency spectrum in human populations. <i>Nature Communications</i> , 2019 , 10, 4141	17.4	23
302	Maximum Likelihood Estimation of Fitness Components in Experimental Evolution. <i>Genetics</i> , 2019 , 211, 1005-1017	4	22

301	Sexual conflict through mother's curse and father's curse. <i>Theoretical Population Biology</i> , 2019 , 129, 9-7	171.2	14
300	CRISPR Gene Drive Efficiency and Resistance Rate Is Highly Heritable with No Common Genetic Loci of Large Effect. <i>Genetics</i> , 2019 , 212, 333-341	4	31
299	Lack of spatial and temporal genetic structure of Japanese eel (Anguilla japonica) populations. <i>Conservation Genetics</i> , 2019 , 20, 467-475	2.6	4
298	Demographic History of the Human Commensal Drosophila melanogaster. <i>Genome Biology and Evolution</i> , 2019 , 11, 844-854	3.9	24
297	Cancer cells in the tumor core exhibit spatially coordinated migration patterns. <i>Journal of Cell Science</i> , 2019 , 132,	5.3	19
296	Overexpression of a glutathione S-transferase (Mdgst) and a galactosyltransferase-like gene (Mdgt1) is responsible for imidacloprid resistance in house flies. <i>Pest Management Science</i> , 2019 , 75, 37-44	4.6	18
295	Molecular safeguarding of CRISPR gene drive experiments. <i>ELife</i> , 2019 , 8,	8.9	65
294	Integrated analysis of population genomics, transcriptomics and virulence provides novel insights into Streptococcus pyogenes pathogenesis. <i>Nature Genetics</i> , 2019 , 51, 548-559	36.3	42
293	Female Genetic Contributions to Sperm Competition in. <i>Genetics</i> , 2019 , 212, 789-800	4	11
292	Allele frequency dynamics in a pedigreed natural population. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 2158-2164	11.5	25
291	Variable Rates of Simple Satellite Gains across the Drosophila Phylogeny. <i>Molecular Biology and Evolution</i> , 2018 , 35, 925-941	8.3	41
290	Satellite DNA evolution: old ideas, new approaches. <i>Current Opinion in Genetics and Development</i> , 2018 , 49, 70-78	4.9	74
289	Rates and Patterns of Mutation in Tandem Repetitive DNA in Six Independent Lineages of Chlamydomonas reinhardtii. <i>Genome Biology and Evolution</i> , 2018 , 10, 1673-1686	3.9	7
288	Red fox genome assembly identifies genomic regions associated with tame and aggressive behaviours. <i>Nature Ecology and Evolution</i> , 2018 , 2, 1479-1491	12.3	74
287	Reducing resistance allele formation in CRISPR gene drive. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 5522-5527	11.5	151
286	Allele-specific expression elucidates cis-regulatory logic. <i>PLoS Genetics</i> , 2018 , 14, e1007690	6	2
285	Selfish genetic elements. <i>PLoS Genetics</i> , 2018 , 14, e1007700	6	25
284	Genus-wide sequencing supports a two-locus model for sex-determination in Phoenix. <i>Nature Communications</i> , 2018 , 9, 3969	17.4	57

2	283	Genomic responses to selection for tame/aggressive behaviors in the silver fox (). <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 10398-10403	11.5	40
2	282	Avian W and mammalian Y chromosomes convergently retained dosage-sensitive regulators. <i>Nature Genetics</i> , 2017 , 49, 387-394	36.3	92
2	281	Rapid Expansion of Immune-Related Gene Families in the House Fly, Musca domestica. <i>Molecular Biology and Evolution</i> , 2017 , 34, 857-872	8.3	22
2	280	Estimating mating rates in wild Drosophila melanogaster females by decay rates of male reproductive proteins in their reproductive tracts. <i>Molecular Ecology Resources</i> , 2017 , 17, 1202-1209	8.4	9
2	2 79	Genomic signatures of local adaptation in the Drosophila immune response. Fly, 2017 , 11, 277-283	1.3	5
2	278	A Pooled Sequencing Approach Identifies a Candidate Meiotic Driver in. <i>Genetics</i> , 2017 , 206, 451-465	4	32
2	2 77	Survey of Global Genetic Diversity Within the Drosophila Immune System. <i>Genetics</i> , 2017 , 205, 353-366	4	23
2	276	Evolution of Resistance Against CRISPR/Cas9 Gene Drive. <i>Genetics</i> , 2017 , 205, 827-841	4	189
2	275	Variation in Position Effect Variegation Within a Natural Population. <i>Genetics</i> , 2017 , 207, 1157-1166	4	7
2	274	A tuneable microfluidic system for long duration chemotaxis experiments in a 3D collagen matrix. <i>Lab on A Chip</i> , 2017 , 17, 3851-3861	7.2	15
2	2 73	Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations. <i>PLoS Genetics</i> , 2017 , 13, e1006796	6	176
2	272	The human microbiome in evolution. <i>BMC Biology</i> , 2017 , 15, 127	7.3	136
2	271	Cancer-associated fibroblasts lead tumor invasion through integrin-B-dependent fibronectin assembly. <i>Journal of Cell Biology</i> , 2017 , 216, 3509-3520	7.3	152
2	270	The Relationship Between the Human Genome and Microbiome Comes into View. <i>Annual Review of Genetics</i> , 2017 , 51, 413-433	14.5	158
2	269	Selection Constrains High Rates of Tandem Repetitive DNA Mutation in. <i>Genetics</i> , 2017 , 207, 697-710	4	15
2	268	Evolutionary Dynamics of Male Reproductive Genes in the Subgroup. <i>G3: Genes, Genomes, Genetics</i> , 2017 , 7, 3145-3155	3.2	16
2	267	Roles of Female and Male Genotype in Post-Mating Responses in Drosophila melanogaster. <i>Journal of Heredity</i> , 2017 , 108, 740-753	2.4	24
2	266	Deconstructing isolation-by-distance: The genomic consequences of limited dispersal. <i>PLoS Genetics</i> , 2017 , 13, e1006911	6	52

265	Drosophila Genotype Influences Commensal Bacterial Levels. <i>PLoS ONE</i> , 2017 , 12, e0170332	3.7	24
264	ABO antigen and secretor statuses are not associated with gut microbiota composition in 1,500 twins. <i>BMC Genomics</i> , 2016 , 17, 941	4.5	49
263	Characterization of Greater Middle Eastern genetic variation for enhanced disease gene discovery. <i>Nature Genetics</i> , 2016 , 48, 1071-6	36.3	192
262	Genomic Consequences of Population Decline in the Endangered Florida Scrub-Jay. <i>Current Biology</i> , 2016 , 26, 2974-2979	6.3	43
261	Candidate genetic modifiers of retinitis pigmentosa identified by exploiting natural variation in Drosophila. <i>Human Molecular Genetics</i> , 2016 , 25, 651-9	5.6	47
260	Signatures of early frailty in the gut microbiota. <i>Genome Medicine</i> , 2016 , 8, 8	14.4	200
259	Indigenous Arabs are descendants of the earliest split from ancient Eurasian populations. <i>Genome Research</i> , 2016 , 26, 151-62	9.7	60
258	Strong Constraint on Human Genes Escaping X-Inactivation Is Modulated by their Expression Level and Breadth in Both Sexes. <i>Molecular Biology and Evolution</i> , 2016 , 33, 384-93	8.3	12
257	Allele-Specific Transcriptome and Methylome Analysis Reveals Stable Inheritance and Cis-Regulation of DNA Methylation in Nasonia. <i>PLoS Biology</i> , 2016 , 14, e1002500	9.7	33
256	Extensive local adaptation within the chemosensory system following Drosophila melanogasters global expansion. <i>Nature Communications</i> , 2016 , 7, ncomms11855	17.4	31
255	Integrative modelling of tumour DNA methylation quantifies the contribution of metabolism. <i>Nature Communications</i> , 2016 , 7, 13666	17.4	29
254	Evidence for the fixation of gene duplications by positive selection in Drosophila. <i>Genome Research</i> , 2016 , 26, 787-98	9.7	40
253	Cross-species comparisons of host genetic associations with the microbiome. <i>Science</i> , 2016 , 352, 532-5	33.3	168
252	Genetic Determinants of the Gut Microbiome in UK Twins. <i>Cell Host and Microbe</i> , 2016 , 19, 731-43	23.4	547
251	Integrated network analysis reveals distinct regulatory roles of transcription factors and microRNAs. <i>Rna</i> , 2016 , 22, 1663-1672	5.8	17
250	Heritable components of the human fecal microbiome are associated with visceral fat. <i>Genome Biology</i> , 2016 , 17, 189	18.3	124
249	Host genetic determinants of microbiota-dependent nutrition revealed by genome-wide analysis of Drosophila melanogaster. <i>Nature Communications</i> , 2015 , 6, 6312	17.4	64
248	Characterizing male-female interactions using natural genetic variation in Drosophila melanogaster. <i>Journal of Heredity</i> , 2015 , 106, 67-79	2.4	24

(2015-2015)

247	Genetic and epigenetic architecture of sex-biased expression in the jewel wasps Nasonia vitripennis and giraulti. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E3545-54	11.5	38
246	Aberrant Time to Most Recent Common Ancestor as a Signature of Natural Selection. <i>Molecular Biology and Evolution</i> , 2015 , 32, 2784-97	8.3	13
245	The genetic architecture of the genome-wide transcriptional response to ER stress in the mouse. <i>PLoS Genetics</i> , 2015 , 11, e1004924	6	20
244	Estimating the mutation load in human genomes. <i>Nature Reviews Genetics</i> , 2015 , 16, 333-43	30.1	174
243	Sex-ratio meiotic drive and Y-linked resistance in Drosophila affinis. <i>Genetics</i> , 2015 , 199, 831-40	4	17
242	Host genetic variation impacts microbiome composition across human body sites. <i>Genome Biology</i> , 2015 , 16, 191	18.3	428
241	Modeling the Manipulation of Natural Populations by the Mutagenic Chain Reaction. <i>Genetics</i> , 2015 , 201, 425-31	4	82
240	Birth of a new gene on the Y chromosome of Drosophila melanogaster. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 12450-5	11.5	44
239	The distribution of fitness effects in an uncertain world. <i>Evolution; International Journal of Organic Evolution</i> , 2015 , 69, 1610-1618	3.8	14
238	Induction of excessive endoplasmic reticulum stress in the Drosophila male accessory gland results in infertility. <i>PLoS ONE</i> , 2015 , 10, e0119386	3.7	25
237	Gut-Microbiota-Metabolite Axis in Early Renal Function Decline. <i>PLoS ONE</i> , 2015 , 10, e0134311	3.7	85
236	Inference of Heterosis and Epistasis in Transposon Tagged Drosophila. <i>CSSA Special Publication - Crop Science Society of America</i> , 2015 , 89-97		
235	Behavioral idiosyncrasy reveals genetic control of phenotypic variability. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 6706-11	11.5	113
234	TRIM28 Controls Genomic Imprinting through Distinct Mechanisms during and after Early Genome-wide Reprogramming. <i>Cell Reports</i> , 2015 , 13, 1194-1205	10.6	26
233	Global diversity lines - a five-continent reference panel of sequenced Drosophila melanogaster strains. <i>G3: Genes, Genomes, Genetics</i> , 2015 , 5, 593-603	3.2	79
232	Transcriptome Differences between Alternative Sex Determining Genotypes in the House Fly, Musca domestica. <i>Genome Biology and Evolution</i> , 2015 , 7, 2051-61	3.9	19
231	Evolutionary genomics. Conundrum of jumbled mosquito genomes. <i>Science</i> , 2015 , 347, 27-8	33.3	25
230	Population genomic analysis of 962 whole genome sequences of humans reveals natural selection in non-coding regions. <i>PLoS ONE</i> , 2015 , 10, e0121644	3.7	12

229	Biological knowledge-driven analysis of epistasis in human GWAS with application to lipid traits. <i>Methods in Molecular Biology</i> , 2015 , 1253, 35-45	1.4	9
228	Comparative metabolomics in primates reveals the effects of diet and gene regulatory variation on metabolic divergence. <i>Scientific Reports</i> , 2014 , 4, 5809	4.9	14
227	Genome-wide histone state profiling of fibroblasts from the opossum, Monodelphis domestica, identifies the first marsupial-specific imprinted gene. <i>BMC Genomics</i> , 2014 , 15, 89	4.5	1
226	Genetics: The vital Y chromosome. <i>Nature</i> , 2014 , 508, 463-5	50.4	11
225	Limited gene misregulation is exacerbated by allele-specific upregulation in lethal hybrids between Drosophila melanogaster and Drosophila simulans. <i>Molecular Biology and Evolution</i> , 2014 , 31, 1767-78	8.3	10
224	Chromosome-wide profiling of X-chromosome inactivation and epigenetic states in fetal brain and placenta of the opossum, Monodelphis domestica. <i>Genome Research</i> , 2014 , 24, 70-83	9.7	37
223	Human genetics shape the gut microbiome. <i>Cell</i> , 2014 , 159, 789-99	56.2	1750
222	Balancing selection in species with separate sexes: insights from FisherS geometric model. <i>Genetics</i> , 2014 , 197, 991-1006	4	66
221	Positive and purifying selection on the Drosophila Y chromosome. <i>Molecular Biology and Evolution</i> , 2014 , 31, 2612-23	8.3	20
220	Stresses at the cell surface during animal cell morphogenesis. <i>Current Biology</i> , 2014 , 24, R484-94	6.3	88
219	Genomics of ecological adaptation in cactophilic Drosophila. <i>Genome Biology and Evolution</i> , 2014 , 7, 349	9-56	38
218	Genome of the house fly, Musca domestica L., a global vector of diseases with adaptations to a septic environment. <i>Genome Biology</i> , 2014 , 15, 466	18.3	172
217	Distortion of genealogical properties when the sample is very large. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 2385-90	11.5	43
216	Correlated variation and population differentiation in satellite DNA abundance among lines of Drosophila melanogaster. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 18793-8	11.5	55
215	Using Mendelian inheritance to improve high-throughput SNP discovery. <i>Genetics</i> , 2014 , 198, 847-57	4	21
214	Neutral genomic regions refine models of recent rapid human population growth. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 757-62	11.5	86
213	Monitoring actin cortex thickness in live cells. <i>Biophysical Journal</i> , 2013 , 105, 570-80	2.9	156
212	Genetic incompatibilities are widespread within species. <i>Nature</i> , 2013 , 504, 135-7	50.4	136

(2012-2013)

211	Efficient identification of Y chromosome sequences in the human and Drosophila genomes. <i>Genome Research</i> , 2013 , 23, 1894-907	9.7	68
210	Population growth inflates the per-individual number of deleterious mutations and reduces their mean effect. <i>Genetics</i> , 2013 , 195, 969-78	4	50
209	Large neurological component to genetic differences underlying biased sperm use in Drosophila. <i>Genetics</i> , 2013 , 193, 177-85	4	31
208	Antagonistic versus nonantagonistic models of balancing selection: characterizing the relative timescales and hitchhiking effects of partial selective sweeps. <i>Evolution; International Journal of Organic Evolution</i> , 2013 , 67, 908-17	3.8	31
207	Population genetic tools for dissecting innate immunity in humans. <i>Nature Reviews Immunology</i> , 2013 , 13, 280-93	36.5	87
206	Gene-based testing of interactions in association studies of quantitative traits. <i>PLoS Genetics</i> , 2013 , 9, e1003321	6	67
205	Reproduction and immunity-driven natural selection in the human WFDC locus. <i>Molecular Biology and Evolution</i> , 2013 , 30, 938-50	8.3	16
204	Inferences of demography and selection in an African population of Drosophila melanogaster. <i>Genetics</i> , 2013 , 193, 215-28	4	20
203	Natural genetic variation in male reproductive genes contributes to nontransitivity of sperm competitive ability in Drosophila melanogaster. <i>Molecular Ecology</i> , 2013 , 22, 1400-15	5.7	35
202	Sequence diversity of Pan troglodytes subspecies and the impact of WFDC6 selective constraints in reproductive immunity. <i>Genome Biology and Evolution</i> , 2013 , 5, 2512-23	3.9	1
201	Paternally expressed genes predominate in the placenta. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 10705-10	11.5	97
200	Characterizing the infection-induced transcriptome of Nasonia vitripennis reveals a preponderance of taxonomically-restricted immune genes. <i>PLoS ONE</i> , 2013 , 8, e83984	3.7	28
199	Identification of small molecule inhibitors of cytokinesis and single cell wound repair. <i>Cytoskeleton</i> , 2012 , 69, 1010-20	2.4	5
198	A general population genetic framework for antagonistic selection that accounts for demography and recurrent mutation. <i>Genetics</i> , 2012 , 190, 1477-89	4	76
197	Random X inactivation in the mule and horse placenta. <i>Genome Research</i> , 2012 , 22, 1855-63	9.7	29
196	Population genetic inference from personal genome data: impact of ancestry and admixture on human genomic variation. <i>American Journal of Human Genetics</i> , 2012 , 91, 660-71	11	77
195	Recent explosive human population growth has resulted in an excess of rare genetic variants. <i>Science</i> , 2012 , 336, 740-3	33.3	387
194	Disentangling the relationship between sex-biased gene expression and X-linkage. <i>Genome Research</i> , 2012 , 22, 1255-65	9.7	91

193	Genome sequencing reveals complex speciation in the Drosophila simulans clade. <i>Genome Research</i> , 2012 , 22, 1499-511	9.7	158
192	Impact of microRNA regulation on variation in human gene expression. <i>Genome Research</i> , 2012 , 22, 124	43 ₉ 5 / 4	182
191	Faster-X evolution of gene expression in Drosophila. <i>PLoS Genetics</i> , 2012 , 8, e1003013	6	63
190	Knowledge-driven analysis identifies a gene-gene interaction affecting high-density lipoprotein cholesterol levels in multi-ethnic populations. <i>PLoS Genetics</i> , 2012 , 8, e1002714	6	55
189	Refinement of primate copy number variation hotspots identifies candidate genomic regions evolving under positive selection. <i>Genome Biology</i> , 2011 , 12, R52	18.3	48
188	The functional spectrum of low-frequency coding variation. <i>Genome Biology</i> , 2011 , 12, R84	18.3	161
187	Association between sex-biased gene expression and mutations with sex-specific phenotypic consequences in Drosophila. <i>Genome Biology and Evolution</i> , 2011 , 3, 151-5	3.9	49
186	Female influence on pre- and post-copulatory sexual selection and its genetic basis in Drosophila melanogaster. <i>Molecular Ecology</i> , 2011 , 20, 4098-108	5.7	13
185	Genes involved in convergent evolution of eusociality in bees. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 7472-7	11.5	159
184	Demographic history and rare allele sharing among human populations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 11983-8	11.5	455
183	Associations between Variation in X Chromosome Male Reproductive Genes and Sperm Competitive Ability in Drosophila melanogaster. <i>International Journal of Evolutionary Biology</i> , 2011 , 2011, 214280		13
182	Detecting directional selection in the presence of recent admixture in African-Americans. <i>Genetics</i> , 2011 , 187, 823-35	4	28
181	A survey for novel imprinted genes in the mouse placenta by mRNA-seq. <i>Genetics</i> , 2011 , 189, 109-22	4	75
180	Mechanics and regulation of cell shape during the cell cycle. <i>Results and Problems in Cell Differentiation</i> , 2011 , 53, 31-73	1.4	43
179	Sex linkage, sex-specific selection, and the role of recombination in the evolution of sexually dimorphic gene expression. <i>Evolution; International Journal of Organic Evolution</i> , 2010 , 64, 3417-42	3.8	82
178	The genetic basis for male x female interactions underlying variation in reproductive phenotypes of Drosophila. <i>Genetics</i> , 2010 , 186, 1355-65	4	51
177	The effect of recent admixture on inference of ancient human population history. <i>Genetics</i> , 2010 , 185, 611-22	4	23
176	Population dynamics of PIWI-interacting RNAs (piRNAs) and their targets in Drosophila. <i>Genome Research</i> , 2010 , 20, 212-27	9.7	73

175	A hierarchical Bayesian model for a novel sparse partial diallel crossing design. <i>Genetics</i> , 2010 , 185, 361	-743	27
174	Genotype and gene expression associations with immune function in Drosophila. <i>PLoS Genetics</i> , 2010 , 6, e1000797	6	49
173	Balancing selection maintains a form of ERAP2 that undergoes nonsense-mediated decay and affects antigen presentation. <i>PLoS Genetics</i> , 2010 , 6, e1001157	6	175
172	Functional regulatory divergence of the innate immune system in interspecific Drosophila hybrids. <i>Molecular Biology and Evolution</i> , 2010 , 27, 2596-605	8.3	3
171	Deep resequencing reveals excess rare recent variants consistent with explosive population growth. <i>Nature Communications</i> , 2010 , 1, 131	17.4	183
170	Contrasting methods of quantifying fine structure of human recombination. <i>Annual Review of Genomics and Human Genetics</i> , 2010 , 11, 45-64	9.7	23
169	Paternally biased X inactivation in mouse neonatal brain. <i>Genome Biology</i> , 2010 , 11, R79	18.3	35
168	Inferring genetic ancestry: opportunities, challenges, and implications. <i>American Journal of Human Genetics</i> , 2010 , 86, 661-73	11	158
167	Population genetic structure of the people of Qatar. American Journal of Human Genetics, 2010, 87, 17-	25 1	86
166	Strong evidence for lineage and sequence specificity of substitution rates and patterns in Drosophila. <i>Molecular Biology and Evolution</i> , 2009 , 26, 1591-605	8.3	36
165	Population genomic inferences from sparse high-throughput sequencing of two populations of Drosophila melanogaster. <i>Genome Biology and Evolution</i> , 2009 , 1, 449-65	3.9	49
164	Targets of balancing selection in the human genome. <i>Molecular Biology and Evolution</i> , 2009 , 26, 2755-6-	48.3	199
163	X-linked variation in immune response in Drosophila melanogaster. <i>Genetics</i> , 2009 , 183, 1477-91	4	24
162	Methods for human demographic inference using haplotype patterns from genomewide single-nucleotide polymorphism data. <i>Genetics</i> , 2009 , 182, 217-31	4	48
161	Darwinian and demographic forces affecting human protein coding genes. <i>Genome Research</i> , 2009 , 19, 838-49	9.7	122
160	Evolutionary processes acting on candidate cis-regulatory regions in humans inferred from patterns of polymorphism and divergence. <i>PLoS Genetics</i> , 2009 , 5, e1000592	6	101
159	Low exchangeability of selenocysteine, the 21st amino acid, in vertebrate proteins. <i>Molecular Biology and Evolution</i> , 2009 , 26, 2031-40	8.3	33
158	Comparative profiling of the transcriptional response to infection in two species of Drosophila by short-read cDNA sequencing. <i>BMC Genomics</i> , 2009 , 10, 259	4.5	18

157	Integration of single and multicellular wound responses. Current Biology, 2009, 19, 1389-95	6.3	95
156	Finding the missing heritability of complex diseases. <i>Nature</i> , 2009 , 461, 747-53	50.4	6084
155	Genetics. Life after GWA studies. <i>Science</i> , 2009 , 326, 239-40	33.3	24
¹ 54	Comparative Genomics on theDrosophilaPhylogenetic Tree. <i>Annual Review of Ecology, Evolution, and Systematics</i> , 2009 , 40, 459-480	13.5	33
153	Proportionally more deleterious genetic variation in European than in African populations. <i>Nature</i> , 2008 , 451, 994-7	50.4	299
152	Low conservation of gene content in the Drosophila Y chromosome. <i>Nature</i> , 2008 , 456, 949-51	50.4	113
151	Regulatory changes underlying expression differences within and between Drosophila species. <i>Nature Genetics</i> , 2008 , 40, 346-50	36.3	280
150	The evolutionary costs of immunological maintenance and deployment. <i>BMC Evolutionary Biology</i> , 2008 , 8, 76	3	142
149	Genome sequences from extinct relatives. <i>Cell</i> , 2008 , 134, 388-9	56.2	4
148	Genome-wide association study provides evidence for a breast cancer risk locus at 6q22.33. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 4340-5	11.5	256
147	Evolutionary constraint and adaptation in the metabolic network of Drosophila. <i>Molecular Biology and Evolution</i> , 2008 , 25, 2537-46	8.3	43
146	Post-mating gene expression profiles of female Drosophila melanogaster in response to time and to four male accessory gland proteins. <i>Genetics</i> , 2008 , 179, 1395-408	4	100
145	Independent effects of cis- and trans-regulatory variation on gene expression in Drosophila melanogaster. <i>Genetics</i> , 2008 , 178, 1831-5	4	39
144	Assessing the evolutionary impact of amino acid mutations in the human genome. <i>PLoS Genetics</i> , 2008 , 4, e1000083	6	473
143	Contrasting the efficacy of selection on the X and autosomes in Drosophila. <i>Molecular Biology and Evolution</i> , 2008 , 25, 454-67	8.3	61
142	APOE/C1/C4/C2 hepatic control region polymorphism influences plasma apoE and LDL cholesterol levels. <i>Human Molecular Genetics</i> , 2008 , 17, 2039-46	5.6	19
141	Population genetic analysis of shotgun assemblies of genomic sequences from multiple individuals. <i>Genome Research</i> , 2008 , 18, 1020-9	9.7	77
140	Transcriptome-wide identification of novel imprinted genes in neonatal mouse brain. <i>PLoS ONE</i> , 2008 , 3, e3839	3.7	145

139	A genome-wide approach to identifying novel-imprinted genes. <i>Human Genetics</i> , 2008 , 122, 625-34	6.3	56
138	Analysis of genetic variation in Ashkenazi Jews by high density SNP genotyping. <i>BMC Genetics</i> , 2008 , 9, 14	2.6	30
137	Evolution of protein-coding genes in Drosophila. <i>Trends in Genetics</i> , 2008 , 24, 114-23	8.5	206
136	Evolutionary and biomedical insights from the rhesus macaque genome. <i>Science</i> , 2007 , 316, 222-34	33.3	1072
135	Understanding the accuracy of statistical haplotype inference with sequence data of known phase. <i>Genetic Epidemiology</i> , 2007 , 31, 659-71	2.6	54
134	Dynamic evolution of the innate immune system in Drosophila. <i>Nature Genetics</i> , 2007 , 39, 1461-8	36.3	318
133	Recent and ongoing selection in the human genome. <i>Nature Reviews Genetics</i> , 2007 , 8, 857-68	30.1	365
132	Evolution of genes and genomes on the Drosophila phylogeny. <i>Nature</i> , 2007 , 450, 203-18	50.4	1586
131	Simple models of genomic variation in human SNP density. <i>BMC Genomics</i> , 2007 , 8, 146	4.5	9
130	Rehabilitation and the single cell. <i>Current Opinion in Cell Biology</i> , 2007 , 19, 95-100	9	42
130 129	Rehabilitation and the single cell. <i>Current Opinion in Cell Biology</i> , 2007 , 19, 95-100 Genomic analyses of transcription factor binding, histone acetylation, and gene expression reveal mechanistically distinct classes of estrogen-regulated promoters. <i>Molecular and Cellular Biology</i> , 2007 , 27, 5090-104	9 4.8	42 166
	Genomic analyses of transcription factor binding, histone acetylation, and gene expression reveal mechanistically distinct classes of estrogen-regulated promoters. <i>Molecular and Cellular Biology</i> ,		
129	Genomic analyses of transcription factor binding, histone acetylation, and gene expression reveal mechanistically distinct classes of estrogen-regulated promoters. <i>Molecular and Cellular Biology</i> , 2007 , 27, 5090-104	4.8	166
129	Genomic analyses of transcription factor binding, histone acetylation, and gene expression reveal mechanistically distinct classes of estrogen-regulated promoters. <i>Molecular and Cellular Biology</i> , 2007 , 27, 5090-104 Localizing recent adaptive evolution in the human genome. <i>PLoS Genetics</i> , 2007 , 3, e90 Associations between sperm competition and natural variation in male reproductive genes on the	4.8	166 342
129 128 127	Genomic analyses of transcription factor binding, histone acetylation, and gene expression reveal mechanistically distinct classes of estrogen-regulated promoters. <i>Molecular and Cellular Biology</i> , 2007 , 27, 5090-104 Localizing recent adaptive evolution in the human genome. <i>PLoS Genetics</i> , 2007 , 3, e90 Associations between sperm competition and natural variation in male reproductive genes on the third chromosome of Drosophila melanogaster. <i>Genetics</i> , 2007 , 176, 1245-60 Full-exon resequencing reveals toll-like receptor variants contribute to human susceptibility to	4.8	166 342 83
129 128 127	Genomic analyses of transcription factor binding, histone acetylation, and gene expression reveal mechanistically distinct classes of estrogen-regulated promoters. <i>Molecular and Cellular Biology</i> , 2007, 27, 5090-104 Localizing recent adaptive evolution in the human genome. <i>PLoS Genetics</i> , 2007, 3, e90 Associations between sperm competition and natural variation in male reproductive genes on the third chromosome of Drosophila melanogaster. <i>Genetics</i> , 2007, 176, 1245-60 Full-exon resequencing reveals toll-like receptor variants contribute to human susceptibility to tuberculosis disease. <i>PLoS ONE</i> , 2007, 2, e1318 Consistent effects of genes involved in reverse cholesterol transport on plasma lipid and apolipoprotein levels in CARDIA participants. <i>Arteriosclerosis</i> , <i>Thrombosis</i> , and <i>Vascular Biology</i> ,	4.8 6 4 3.7	166 342 83 148
129 128 127 126	Genomic analyses of transcription factor binding, histone acetylation, and gene expression reveal mechanistically distinct classes of estrogen-regulated promoters. <i>Molecular and Cellular Biology</i> , 2007, 27, 5090-104 Localizing recent adaptive evolution in the human genome. <i>PLoS Genetics</i> , 2007, 3, e90 Associations between sperm competition and natural variation in male reproductive genes on the third chromosome of Drosophila melanogaster. <i>Genetics</i> , 2007, 176, 1245-60 Full-exon resequencing reveals toll-like receptor variants contribute to human susceptibility to tuberculosis disease. <i>PLoS ONE</i> , 2007, 2, e1318 Consistent effects of genes involved in reverse cholesterol transport on plasma lipid and apolipoprotein levels in CARDIA participants. <i>Arteriosclerosis</i> , <i>Thrombosis</i> , <i>and Vascular Biology</i> , 2006, 26, 1828-36 Natural variation in male-induced Sost-of-matingSand allele-specific association with male reproductive genes in Drosophila melanogaster. <i>Philosophical Transactions of the Royal Society B</i> :	4.8 6 4 3.7 9.4	166 342 83 148 38

121	Genomics of the evolutionary process. <i>Trends in Ecology and Evolution</i> , 2006 , 21, 316-21	10.9	24
120	Genome-based biomarkers for adverse drug effects, patient enrichment and prediction of drug response, and their incorporation into clinical trial design. <i>Personalized Medicine</i> , 2006 , 3, 177-185	2.2	11
119	EXTENSIVE INTROGRESSION OF MITOCHONDRIAL DNA RELATIVE TO NUCLEAR GENES IN THE DROSOPHILA YAKUBA SPECIES GROUP. <i>Evolution; International Journal of Organic Evolution</i> , 2006 , 60, 292-302	3.8	166
118	Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera. <i>Science</i> , 2006 , 314, 642-5	33.3	271
117	Mining genetic epidemiology data with Bayesian networks application to APOE gene variation and plasma lipid levels. <i>Journal of Computational Biology</i> , 2005 , 12, 1-11	1.7	31
116	Natural selection on protein-coding genes in the human genome. <i>Nature</i> , 2005 , 437, 1153-7	50.4	615
115	Strong linkage disequilibrium of a HbE variant with the (AT)9(T)5 repeat in the BP1 binding site upstream of the beta-globin gene in the Thai population. <i>Journal of Human Genetics</i> , 2005 , 50, 7-11	4.3	2
114	Application of the Stepwise Focusing Method to Optimize the Cost-effectiveness of Genome-wide Association Studies with Limited Research Budgets for Genotyping and Phenotyping. <i>Annals of Human Genetics</i> , 2005 , 69, 323-328	2.2	6
113	A scan for positively selected genes in the genomes of humans and chimpanzees. <i>PLoS Biology</i> , 2005 , 3, e170	9.7	705
112	Genome-wide associations of gene expression variation in humans. <i>PLoS Genetics</i> , 2005 , 1, e78	6	431
111	Sperm competitive ability in Drosophila melanogaster associated with variation in male reproductive proteins. <i>Genetics</i> , 2005 , 169, 243-57	4	141
110	Compensatory cis-trans evolution and the dysregulation of gene expression in interspecific hybrids of Drosophila. <i>Genetics</i> , 2005 , 171, 1813-22	4	151
109	The linkage disequilibrium maps of three human chromosomes across four populations reflect their demographic history and a common underlying recombination pattern. <i>Genome Research</i> , 2005 , 15, 454	-87	87
108	Ascertainment bias in studies of human genome-wide polymorphism. <i>Genome Research</i> , 2005 , 15, 1496-	507	351
107	Genomic scans for selective sweeps using SNP data. <i>Genome Research</i> , 2005 , 15, 1566-75	9.7	668
106	Determinants of the success of whole-genome association testing. <i>Genome Research</i> , 2005 , 15, 1463-7	9.7	66
105	Genetics. Harvesting medical information from the human family tree. <i>Science</i> , 2005 , 307, 1052-3	33.3	28
104	Mapping multiple Quantitative Trait Loci by Bayesian classification. <i>Genetics</i> , 2005 , 169, 2305-18	4	34

(2003-2004)

103	Optimal haplotype block-free selection of tagging SNPs for genome-wide association studies. <i>Genome Research</i> , 2004 , 14, 1633-40	9.7	84
102	Reconstituting the frequency spectrum of ascertained single-nucleotide polymorphism data. <i>Genetics</i> , 2004 , 168, 2373-82	4	117
101	Whole-genome shotgun assembly and comparison of human genome assemblies. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 1916-21	11.5	142
100	Genetic basis of natural variation in D. melanogaster antibacterial immunity. <i>Science</i> , 2004 , 303, 1873-6	33.3	189
99	Evolutionary changes in cis and trans gene regulation. <i>Nature</i> , 2004 , 430, 85-8	50.4	577
98	Genes regulated by mating, sperm, or seminal proteins in mated female Drosophila melanogaster. <i>Current Biology</i> , 2004 , 14, 1509-14	6.3	248
97	The effects of scale: variation in the APOA1/C3/A4/A5 gene cluster. <i>Human Genetics</i> , 2004 , 115, 36-56	6.3	40
96	The role of haplotypes in candidate gene studies. <i>Genetic Epidemiology</i> , 2004 , 27, 321-33	2.6	307
95	Trisomic Phase Inference. Lecture Notes in Computer Science, 2004, 1-8	0.9	1
94	Inferring Piecewise Ancestral History from Haploid Sequences. <i>Lecture Notes in Computer Science</i> , 2004 , 62-73	0.9	2
93	Natural variation in human membrane transporter genes reveals evolutionary and functional constraints. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 5896-901	11.5	208
92	A slippery boundary. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 4971-2	11.5	1
91	Sequence diversity and haplotype structure in the human ABCB1 (MDR1, multidrug resistance transporter) gene. <i>Pharmacogenetics and Genomics</i> , 2003 , 13, 481-94		335
90	Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. <i>Science</i> , 2003 , 302, 1960-3	33.3	517
89	Y chromosome and other heterochromatic sequences of the Drosophila melanogaster genome: how far can we go?. <i>Genetica</i> , 2003 , 117, 227-37	1.5	39
88	A 3.9-centimorgan-resolution human single-nucleotide polymorphism linkage map and screening set. <i>American Journal of Human Genetics</i> , 2003 , 73, 271-84	11	109
87	Linkage disequilibrium and inference of ancestral recombination in 538 single-nucleotide polymorphism clusters across the human genome. <i>American Journal of Human Genetics</i> , 2003 , 73, 285-3	001	72
86	Genomewide distribution of high-frequency, completely mismatching SNP haplotype pairs observed to be common across human populations. <i>American Journal of Human Genetics</i> , 2003 , 73, 1073	3-81	83

85	Finding genes underlying risk of complex disease by linkage disequilibrium mapping. <i>Current Opinion in Genetics and Development</i> , 2003 , 13, 296-302	4.9	56
84	Robustness of inference of haplotype block structure. <i>Journal of Computational Biology</i> , 2003 , 10, 13-9	1.7	51
83	Tracing the evolutionary history of Drosophila regulatory regions with models that identify transcription factor binding sites. <i>Molecular Biology and Evolution</i> , 2003 , 20, 703-14	8.3	71
82	Molecular population genetics of inducible antibacterial peptide genes in Drosophila melanogaster. <i>Molecular Biology and Evolution</i> , 2003 , 20, 914-23	8.3	72
81	Natural selection shaped regional mtDNA variation in humans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 171-6	11.5	783
80	Mapping determinants of variation in energy metabolism, respiration and flight in Drosophila. <i>Genetics</i> , 2003 , 165, 623-35	4	94
79	Linkage disequilibrium and the mapping of complex human traits. <i>Trends in Genetics</i> , 2002 , 18, 19-24	8.5	327
78	Sequence polymorphism at the human apolipoprotein AII gene (APOA2): unexpected deficit of variation in an African-American sample. <i>Human Genetics</i> , 2002 , 111, 75-87	6.3	25
77	Evolution of transcription factor binding sites in Mammalian gene regulatory regions: conservation and turnover. <i>Molecular Biology and Evolution</i> , 2002 , 19, 1114-21	8.3	354
76	Polymorphisms in a human kidney xenobiotic transporter, OCT2, exhibit altered function. <i>Pharmacogenetics and Genomics</i> , 2002 , 12, 395-405		169
75	The genome sequence of the malaria mosquito Anopheles gambiae. <i>Science</i> , 2002 , 298, 129-49	33.3	1622
74	Contributions of 18 additional DNA sequence variations in the gene encoding apolipoprotein E to explaining variation in quantitative measures of lipid metabolism. <i>American Journal of Human Genetics</i> , 2002 , 71, 501-17	11	67
73	Methods for Inferring Block-Wise Ancestral History from Haploid Sequences. <i>Lecture Notes in Computer Science</i> , 2002 , 44-59	0.9	14
72	The sequence of the human genome. <i>Science</i> , 2001 , 291, 1304-51	33.3	10609
71	Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance. <i>Science</i> , 2001 , 293, 455-62	33.3	475
70	Sequence variation and linkage disequilibrium in the human T-cell receptor beta (TCRB) locus. <i>American Journal of Human Genetics</i> , 2001 , 69, 381-95	11	51
69	Sexually antagonistic cytonuclear fitness interactions in Drosophila melanogaster. <i>Genetics</i> , 2001 , 159, 173-87	4	147
68	Evidence for recurrent paralogous gene conversion and exceptional allelic divergence in the Attacin genes of Drosophila melanogaster. <i>Genetics</i> , 2001 , 159, 659-71	4	49

(1998-2000)

67	Chromosomal effects on male and female components of sperm precedence in Drosophila. <i>Genetical Research</i> , 2000 , 75, 143-51	1.1	30
66	Nontransitivity of sperm precedence in Drosophila. <i>Evolution; International Journal of Organic Evolution</i> , 2000 , 54, 1030-5	3.8	77
65	Sequence diversity and large-scale typing of SNPs in the human apolipoprotein E gene. <i>Genome Research</i> , 2000 , 10, 1532-45	9.7	131
64	Seminal fluid causes temporarily reduced egg hatch in previously mated females. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2000 , 267, 201-3	4.4	42
63	NONTRANSITIVITY OF SPERM PRECEDENCE IN DROSOPHILA. <i>Evolution; International Journal of Organic Evolution</i> , 2000 , 54, 1030	3.8	12
62	Recombinational and mutational hotspots within the human lipoprotein lipase gene. <i>American Journal of Human Genetics</i> , 2000 , 66, 69-83	11	162
61	Apolipoprotein E variation at the sequence haplotype level: implications for the origin and maintenance of a major human polymorphism. <i>American Journal of Human Genetics</i> , 2000 , 67, 881-900	11	314
60	Non-Mendelian segregation of sex chromosomes in heterospecific Drosophila males. <i>Genetics</i> , 2000 , 154, 687-94	4	58
59	Molecular population genetics of male accessory gland proteins in Drosophila. <i>Genetics</i> , 2000 , 156, 187	9 ₄ 88	138
58	Limits to Prediction of Phenotypes from Knowledge of Genotypes 2000 , 205-224		13
58 57	Limits to Prediction of Phenotypes from Knowledge of Genotypes 2000, 205-224 Selection for starvation resistance in Drosophila melanogaster: physiological correlates, enzyme activities and multiple stress responses. <i>Journal of Evolutionary Biology</i> , 1999, 12, 370-379	2.3	13
	Selection for starvation resistance in Drosophila melanogaster : physiological correlates, enzyme	2.3 50.4	124
57	Selection for starvation resistance in Drosophila melanogaster: physiological correlates, enzyme activities and multiple stress responses. <i>Journal of Evolutionary Biology</i> , 1999 , 12, 370-379		124
57 56	Selection for starvation resistance in Drosophila melanogaster: physiological correlates, enzyme activities and multiple stress responses. <i>Journal of Evolutionary Biology</i> , 1999 , 12, 370-379 Intron size and natural selection. <i>Nature</i> , 1999 , 401, 344	50.4	124
57 56 55	Selection for starvation resistance in Drosophila melanogaster: physiological correlates, enzyme activities and multiple stress responses. <i>Journal of Evolutionary Biology</i> , 1999 , 12, 370-379 Intron size and natural selection. <i>Nature</i> , 1999 , 401, 344 Sequence variation in the human angiotensin converting enzyme. <i>Nature Genetics</i> , 1999 , 22, 59-62 Estimating European admixture in African Americans by using microsatellites and a microsatellite	50.4 36.3	124 100 408
57 56 55 54	Selection for starvation resistance in Drosophila melanogaster: physiological correlates, enzyme activities and multiple stress responses. <i>Journal of Evolutionary Biology</i> , 1999 , 12, 370-379 Intron size and natural selection. <i>Nature</i> , 1999 , 401, 344 Sequence variation in the human angiotensin converting enzyme. <i>Nature Genetics</i> , 1999 , 22, 59-62 Estimating European admixture in African Americans by using microsatellites and a microsatellite haplotype (CD4/Alu). <i>Human Genetics</i> , 1999 , 104, 149-57 The size distribution of homozygous segments in the human genome. <i>American Journal of Human</i>	50.4 36.3 6.3	124 100 408 39
57 56 55 54 53	Selection for starvation resistance in Drosophila melanogaster: physiological correlates, enzyme activities and multiple stress responses. <i>Journal of Evolutionary Biology</i> , 1999 , 12, 370-379 Intron size and natural selection. <i>Nature</i> , 1999 , 401, 344 Sequence variation in the human angiotensin converting enzyme. <i>Nature Genetics</i> , 1999 , 22, 59-62 Estimating European admixture in African Americans by using microsatellites and a microsatellite haplotype (CD4/Alu). <i>Human Genetics</i> , 1999 , 104, 149-57 The size distribution of homozygous segments in the human genome. <i>American Journal of Human Genetics</i> , 1999 , 65, 1489-92	50.4 36.3 6.3	124 100 408 39

49	INFERENCE OF SPERM COMPETITION FROM BROODS OF FIELD-CAUGHT DROSOPHILA. <i>Evolution;</i> International Journal of Organic Evolution, 1998 , 52, 1334-1341	3.8	102
48	Female genotypes affect sperm displacement in Drosophila. <i>Genetics</i> , 1998 , 149, 1487-93	4	128
47	Negative covariance suggests mutation bias in a two-locus microsatellite system in the fish Sparus aurata. <i>Genetics</i> , 1998 , 150, 1567-75	4	16
46	Genetic conflicts, multiple paternity and the evolution of genomic imprinting. <i>Genetics</i> , 1998 , 148, 893-	9 <u>@</u> 4	44
45	Comparisons of the nucleotide substitution process among repetitive segments of the alpha- and beta-spectrin genes. <i>Journal of Molecular Evolution</i> , 1997 , 44, 492-500	3.1	6
44	Epistasis in measured genotypes: Drosophila P-element insertions. <i>Genetics</i> , 1997 , 147, 157-63	4	53
43	Molecular population genetics of Drosophila immune system genes. <i>Genetics</i> , 1997 , 147, 713-24	4	49
42	Population Genetic Aspects of Gametophytic Self incompatibility. <i>Plant Species Biology</i> , 1996 , 11, 13-22	1.3	3
41	Polymorphism in genes that influence sperm displacement. <i>Genetics</i> , 1996 , 144, 401-8	4	33
40	Microsatellite variation in North American populations of Drosophila melanogaster. <i>Nucleic Acids Research</i> , 1995 , 23, 3882-6	20.1	145
39	Invasion and maintenance of a gene duplication. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1994 , 91, 2950-4	11.5	145
38	COMPARATIVE EVOLUTIONARY ANALYSIS OF METABOLISM IN NINE DROSOPHILA SPECIES. <i>Evolution; International Journal of Organic Evolution</i> , 1994 , 48, 1230-1243	3.8	21
37	Self-incompatibility: theoretical concepts and evolution. <i>Advances in Cellular and Molecular Biology of Plants</i> , 1994 , 220-242		15
36	A Neutrality Test for Continuous Characters Based on Levels of Intraspecific Variation and Interspecific Divergence 1994 , 101-111		4
35	Population genetics of the Y chromosome of Drosophila melanogaster: rDNA variation and phenotypic correlates. <i>Genetical Research</i> , 1991 , 58, 7-13	1.1	11
34	The structure of human mitochondrial DNA variation. <i>Journal of Molecular Evolution</i> , 1991 , 33, 543-55	3.1	183
33	Direct and correlated responses to artificial selection on lipid and glycogen contents in Drosophila melanogaster. <i>Genetical Research</i> , 1990 , 56, 49-56	1.1	13
32	TWO NEUTRALITY TESTS OF Y-LINKED RDNA VARIATION IN DROSOPHILA MELANOGASTER. <i>Evolution; International Journal of Organic Evolution</i> , 1990 , 44, 2106-2112	3.8	3

31	GENETIC COMPONENTS OF VARIATION IN ENERGY STORAGE IN DROSOPHILA MELANOGASTER. <i>Evolution; International Journal of Organic Evolution</i> , 1990 , 44, 637-650	3.8	44
30	Rapid enzyme kinetic assays of individual Drosophila and comparisons of field-caught D. melanogaster and D. simulans. <i>Biochemical Genetics</i> , 1989 , 27, 263-77	2.4	29
29	Deterministic Theory of Heteroplasmy. <i>Evolution; International Journal of Organic Evolution</i> , 1988 , 42, 621	3.8	2
28	DETERMINISTIC THEORY OF HETEROPLASMY. <i>Evolution; International Journal of Organic Evolution</i> , 1988 , 42, 621-626	3.8	12
27	ANALYSIS OF THE GENETIC STRUCTURE OF LIFE HISTORY OF DROSOPHILA MELANOGASTER USING RECOMBINANT EXTRACTED LINES. <i>Evolution; International Journal of Organic Evolution</i> , 1988 , 42, 1309-1320	3.8	13
26	Senescence and the Genetic-Correlation Hang-Up. American Naturalist, 1987, 129, 932-940	3.7	63
25	A Test of Multilocus Interaction in Drosophila melanogaster. <i>American Naturalist</i> , 1987 , 130, 283-299	3.7	4
24	Variation in Y chromosome segregation in natural populations of Drosophila melanogaster. <i>Genetics</i> , 1987 , 115, 143-51	4	15
23	Natural selection and Y-linked polymorphism. <i>Genetics</i> , 1987 , 115, 569-77	4	62
22	Developmental analysis of lipids from wild-type and adipose60 mutants of Drosophila melanogaster. <i>The Journal of Experimental Zoology</i> , 1986 , 240, 95-104		14
21	A numerical simulation of the one-locus, multiple-allele fertility model. <i>Genetics</i> , 1986 , 113, 161-76	4	17
20	Natural selection with nuclear and cytoplasmic transmission. II. Tests with Drosophila from diverse populations. <i>Genetics</i> , 1985 , 111, 97-112	4	35
19	Linkage data supporting a mathematical explanation for some empirical cis-trans effects. <i>Heredity</i> , 1984 , 52 (Pt 1), 145-7	3.6	3
18	Correlated response to phototactic selection. <i>Behavior Genetics</i> , 1984 , 14, 279-93	3.2	4
17	Natural selection with nuclear and cytoplasmic transmission. I. A deterministic model. <i>Genetics</i> , 1984 , 107, 679-701	4	79
16	Selection components in background replacement lines of Drosophila. <i>Genetics</i> , 1984 , 108, 181-200	4	8
15	Molecular safeguarding of CRISPR gene drive experiments		1
14	Leveraging phenotypic variability to identify genetic interactions in human phenotypes		2

13	Rapid expansion of immune-related gene families in the house fly, Musca domestica	2
12	Multiple loci of small effect confer wide variability in efficiency and resistance rate of CRISPR gene drive	4
11	A toxin-antidote CRISPR gene drive system for regional population modification	8
10	Performance analysis of novel toxin-antidote CRISPR gene drive systems	11
9	Resistance is futile: A CRISPR homing gene drive targeting a haplolethal gene	13
8	Computational and experimental performance of CRISPR homing gene drive strategies with multiplexed gRNAs	7
7	Evolutionary dynamics of abundant 7 bp satellites in the genome ofDrosophila virilis	4
6	High-resolution QTL mapping with Diversity Outbred mice identifies genetic variants that impact gut microbiome composition	1
5	Suppression gene drive in continuous space can result in unstable persistence of both drive and wild-type alleles	8
4	RepeatModeler2: automated genomic discovery of transposable element families	23
3	Design and analysis of CRISPR-based underdominance toxin-antidote gene drives	10
2	Experimental demonstration of tethered gene drive systems for confined population modification or suppression	3
1	A homing suppression gene drive with multiplexed gRNAs maintains high drive conversion efficiency and avoids functional resistance alleles	4