
Carl Rikard Unelius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1033160/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differences in attraction to semiochemicals present in sympatric pine shoot beetles,Tomicus minor andT. piniperda. Journal of Chemical Ecology, 1987, 13, 1045-1067.	1.8	96
2	Dimethyl oligosulphides, major volatiles released from Sauromatum guttatum and Phallus impudicus. Phytochemistry, 1994, 35, 321-323.	2.9	87
3	Chemical Communication in Chagas Disease Vectors. Source, Identity, and Potential Function of Volatiles Released by the Metasternal and Brindley's Glands of Triatoma infestans Adults. Journal of Chemical Ecology, 2006, 32, 2035-2052.	1.8	75
4	Floral fragrance chemistry in the early flowering shrub Daphne mezereum. Phytochemistry, 1996, 41, 1477-1483.	2.9	73
5	Metasternal Gland Volatiles and Sexual Communication in the Triatomine Bug, Rhodnius prolixus. Journal of Chemical Ecology, 2008, 34, 450-457.	1.8	65
6	(S)-(+)-linalool, a mate attractant pheromone component in the bee Colletes cunicularius. Journal of Chemical Ecology, 2003, 29, 1-14.	1.8	64
7	Inhibition of tumor cell growth by monoterpenes in vitro: evidence of a Ras-independent mechanism of action. Anti-Cancer Drugs, 1996, 7, 422-429.	1.4	61
8	Detection of Sex Pheromone Components in Manduca sexta (L.). Chemical Senses, 2001, 26, 1175-1186.	2.0	52
9	Attractiveness of Fermentation and Related Products to Spotted Wing Drosophila (Diptera:) Tj ETQq1 1 0.7843	14 rgBT /C	Dverlgck 10 Tf
10	Behavioral and Electrophysiological Responses of Triatoma brasiliensis Males to Volatiles Produced in the Metasternal Glands of Females. Journal of Chemical Ecology, 2009, 35, 1212-1221.	1.8	47
11	Reidentification of the female sex pheromone of the Indian meal moth, Plodia interpunctella: evidence for a four-component pheromone blend. Entomologia Experimentalis Et Applicata, 1999, 92, 137-146.	1.4	46
12	Synthesis and characterization of all four isomers of methyl 2,4-decadienoate for an investigation of the pheromone components of Pityogenes chaicographus. Tetrahedron, 1988, 44, 2541-2548.	1.9	45
13	Semiochemical diversity diverts bark beetle attacks from Norway spruce edges. Journal of Applied Entomology, 2011, 135, 726-737.	1.8	44
14	Simplified Isolation Procedure and Interconversion of the Diastereomers of Nepetalactone and Nepetalactol. Journal of Natural Products, 2005, 68, 886-890.	3.0	43
15	Antifeedants in the Feces of the Pine Weevil Hylobius abietis: Identification and Biological Activity. Journal of Chemical Ecology, 2006, 32, 943-957.	1.8	43
16	Geographic Variation in Pheromone Chemistry, Antennal Electrophysiology, and Pheromone-Mediated Trap Catch of North American Populations of the Obliquebanded Leafroller. Environmental Entomology, 2003, 32, 470-476.	1.4	42
17	Convergent evolution of semiochemicals across Kingdoms: bark beetles and their fungal symbionts. ISME Journal, 2019, 13, 1535-1545.	9.8	42
18	Sex pheromones and attractants in the Eucosmini and Grapholitini (Lepidoptera, Tortricidae). Chemoecology, 1996, 7, 13-23.	1.1	41

#	Article	IF	CITATIONS
19	Styrene, (+)-trans-(1R,4S,5S)-4-Thujanol and Oxygenated Monoterpenes Related to Host Stress Elicit Strong Electrophysiological Responses in the Bark Beetle Ips typographus. Journal of Chemical Ecology, 2019, 45, 474-489.	1.8	36
20	Structure-activity studies on aggregation pheromone components ofPityogenes chalcographus (Coleoptera: Scolytidae). Journal of Chemical Ecology, 1989, 15, 685-695.	1.8	35
21	Antennal response of codling moth males, Cydia pomonella L. (Lepidoptera: Tortricidae), to the geometric isomers of codlemone and codlemone acetate. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2000, 186, 513-519.	1.6	34
22	<i>N</i> â€lodosuccinimide (NIS) in Direct Aromatic Iodination. European Journal of Organic Chemistry, 2017, 2017, 3234-3239.	2.4	34
23	Attraction of pea mothCydia nigricana F. (Lepidoptera: Tortricidae) to female sex pheromone (E,E)-8,10-dodecadien-1-YL acetate, is inhibited by geometric isomersE,Z, Z,E, andZ,Z. Journal of Chemical Ecology, 1993, 19, 1917-1928.	1.8	33
24	Non-Host Volatile Blend Optimization for Forest Protection against the European Spruce Bark Beetle, Ips typographus. PLoS ONE, 2014, 9, e85381.	2.5	32
25	A stereospecific synthesis of all four isomers of 9,11-tetradecadienyl acetate using a general method applicable to 1,3-dienes. Journal of Organic Chemistry, 1987, 52, 292-294.	3.2	30
26	Structure–Activity Relationships of Benzoic Acid Derivatives as Antifeedants for the Pine Weevil, Hylobius abietis. Journal of Chemical Ecology, 2006, 32, 2191-2203.	1.8	30
27	Reverse chemical ecology-based approach leading to the accidental discovery of repellents for Rhodnius prolixus, a vector of Chagas diseases refractory to DEET. Insect Biochemistry and Molecular Biology, 2018, 103, 46-52.	2.7	30
28	Functional Evolution of a Bark Beetle Odorant Receptor Clade Detecting Monoterpenoids of Different Ecological Origins. Molecular Biology and Evolution, 2021, 38, 4934-4947.	8.9	30
29	Chrysanthemyl 2-acetoxy-3-methylbutanoate: the sex pheromone of the citrophilous mealybug, Pseudococcus calceolariae. Tetrahedron Letters, 2010, 51, 1075-1078.	1.4	29
30	Effect of Codlemone Isomers on Codling Moth (Lepidoptera: Tortricidae) Male Attraction. Environmental Entomology, 1998, 27, 1250-1254.	1.4	25
31	Attraction and antennal response of the common wasp, <i>Vespula vulgaris</i> (L.), to selected synthetic chemicals in New Zealand beech forests. Pest Management Science, 2009, 65, 975-981.	3.4	24
32	The Absolute Configuration of the Sex Pheromone of the Citrophilous Mealybug, Pseudococcus calceolariae. Journal of Chemical Ecology, 2011, 37, 166-172.	1.8	24
33	Synthesis of Carbocyclic Nucleoside Analogues by Palladium-Mediated Coupling Acta Chemica Scandinavica, 1992, 46, 686-688.	0.7	23
34	Hydroxy-Methoxybenzoic Methyl Esters: Synthesis and Antifeedant Activity on the Pine Weevil, Hylobius abietis. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2004, 59, 829-835.	0.7	22
35	Morganella morganii bacteria produces phenol as the sex pheromone of the New Zealand grass grub from tyrosine in the colleterial gland. Die Naturwissenschaften, 2016, 103, 59.	1.6	22
36	Kinetic Resolution of Chiral Auxiliaries with C2-Symmetry by Lipase-Catalyzed Alcoholysis and Aminolysis Acta Chemica Scandinavica, 1996, 50, 918-921.	0.7	22

#	Article	IF	CITATIONS
37	Attraction of the invasive social wasp, <i><scp>V</scp>espula vulgaris</i> , by volatiles from fermented brown sugar. Entomologia Experimentalis Et Applicata, 2014, 151, 182-190.	1.4	20
38	Identification, Syntheses, and Characterization of the Geometric Isomers of 9,11-Hexadecadienal from Female Pheromone Glands of the Sugar Cane BorerDiatraea saccharalis. Journal of Natural Products, 2002, 65, 909-915.	3.0	19
39	Invasive Vespula Wasps Utilize Kairomones to Exploit Honeydew Produced by Sooty Scale Insects, Ultracoelostoma. Journal of Chemical Ecology, 2015, 41, 1018-1027.	1.8	19
40	Identification and synthesis of the sex pheromone of Phtheochroa cranaodes (Lepidoptera:) Tj ETQq0 0 0 rgBT	/Overlock] 1.4	.0 Tf 50 622 1 18
41	Characterization of olfactory receptor neurons for pheromone candidate and plant volatile compounds in the clover root weevil, Sitona lepidus. Journal of Insect Physiology, 2013, 59, 1222-1234.	2.0	18
42	Convenient method for the synthesis of lineatin, a pheromone component of Trypodendron lineatum. Journal of Organic Chemistry, 1991, 56, 3358-3362.	3.2	17
43	Identification of (Z)-4-tridecene from Defensive Secretion of Green Lacewing, Chrysoperla carnea. Journal of Chemical Ecology, 2000, 26, 2421-2434.	1.8	17
44	Resolution of an Iridoid Synthon, Gastrolactol, by Means of Dynamic Acetylation and Lipase-Catalyzed Alcoholysis. Journal of Organic Chemistry, 2001, 66, 5384-5387.	3.2	17
45	Cold acclimation induces desensitization to adenosine in brown fat cells without changing receptor binding. American Journal of Physiology - Cell Physiology, 1990, 258, C818-C826.	4.6	16
46	Enantiomeric composition of monoterpene hydrocarbons from the liverwort Conocephalum conicum. Phytochemistry, 1992, 31, 3121-3123.	2.9	16
47	Parthenogenesis, calling behavior, and insect-released volatiles of leafminer moth Phyllonorycter emberizaepenella. Journal of Chemical Ecology, 2002, 28, 1191-1208.	1.8	16
48	Vegetables as biocatalysts in stereoselective hydrolysis of labile organic compounds. Green Chemistry, 2009, 11, 1900.	9.0	16
49	Volatiles from greenâ€lipped mussel as a lead to vespid wasp attractants. Journal of Applied Entomology, 2014, 138, 87-95.	1.8	16
50	(4 <i>S</i> ,5 <i>S</i>)-2,2,4-Triethyl-5-methyl-1,3-dioxolane: A New Volatile Released by a Triatomine Bug. Organic Letters, 2010, 12, 5601-5603.	4.6	15
51	Effects of Methyl Salicylate on Host Plant Acceptance and Feeding by the Aphid Rhopalosiphum padi. Frontiers in Plant Science, 2021, 12, 710268.	3.6	15
52	Quantitative Structure–Activity Relationships of Pine Weevil Antifeedants, a Multivariate Approach. Journal of Agricultural and Food Chemistry, 2007, 55, 9365-9372.	5.2	14
53	Attraction of Rhodnius prolixus males to a synthetic female-pheromone blend. Parasites and Vectors, 2018, 11, 418.	2.5	14
54	Synthesis, NMR conformational studies and host–guest behaviour of new (+)-tartaric acid derivatives. Tetrahedron: Asymmetry, 2005, 16, 635-640.	1.8	13

#	Article	IF	CITATIONS
55	Chemical Composition of the Rectal Gland and Volatiles Released by Female Queensland Fruit Fly, Bactrocera tryoni (Diptera: Tephritidae). Environmental Entomology, 2019, 48, 807-814.	1.4	13
56	Potential of a blend of E8,E10â€120H and E8,E10â€12Ac for mating disruption of codling moth, <i>Cydia pomonella</i> L. (Lep., Tortricidae). Journal of Applied Entomology, 1996, 120, 611-614.	1.8	12
57	Pheromone communication channels in tortricid moths: lower specificity of alcohol vs. acetate geometric isomer blends. Bulletin of Entomological Research, 2010, 100, 225-230.	1.0	12
58	Identification and electrophysiological studies of (4S,5S)-5-hydroxy-4-methyl-3-heptanone and 4-methyl-3,5-heptanedione in male lucerne weevils. Die Naturwissenschaften, 2013, 100, 135-143.	1.6	12
59	Pheromone races of Cydia splendana (Lepidoptera, Tortricidae) overlap in host plant association and geographic distribution. Frontiers in Ecology and Evolution, 0, 2, .	2.2	12
60	Electrophysiological Studies and Identification of Possible Sex Pheromone Components of Brazilian Populations of the Sugarcane Borer, Diatraea saccharalis. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2002, 57, 753-758.	1.4	11
61	Synthesis and Field Tests of Sex Pheromone Components of the Leafroller Argyrotaenia sphaleropa. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2004, 59, 708-712.	1.4	11
62	Structure Elucidation and Synthesis of Dioxolanes Emitted by Two <i>Triatoma</i> Species (Hemiptera:) Tj ETQ	9q0	T /Qverlock 10
63	Structure–Activity Relationships of Phenylpropanoids as Antifeedants for the Pine Weevil Hylobius abietis. Journal of Chemical Ecology, 2008, 34, 339-352.	1.8	10
64	Asymmetric Synthesis of Iridoid Derivatives Using Resolved 2â€Phenylindoline as a Chiral Auxiliary. European Journal of Organic Chemistry, 2008, 2008, 5915-5921.	2.4	9
65	Semiochemicals related to the aphid Cinara pilicornis and its host, Picea abies: A method to assign nepetalactone diastereomers. Journal of Chromatography A, 2008, 1180, 165-170.	3.7	9
66	Synthesis and Characterization of the Four Geometrical Isomers of 3,5-Dodecadienyl Acetate Acta Chemica Scandinavica, 1998, 52, 930-934.	0.7	9
67	Synthesis of all four stereoisomers of 5-hydroxy-4-methyl-3-heptanone using plants and oyster mushrooms. Tetrahedron, 2009, 65, 8697-8701.	1.9	8
68	Honey Norisoprenoids Attract Bumble Bee, <i>Bombus terrestris</i> , in New Zealand Mountain Beech Forests. Journal of Agricultural and Food Chemistry, 2018, 66, 13065-13072.	5.2	8
69	Asymmetric Synthesis of Oxygenated Monoterpenoids of Importance for Bark Beetle Ecology. Journal of Natural Products, 2020, 83, 3332-3337.	3.0	8
70	Enantioselective Preparation of the Stereoisomersof 4-Methylheptan-3-ol Using Candida antarctica Lipase B. Collection of Czechoslovak Chemical Communications, 1998, 63, 525-533.	1.0	8
71	Sex Pheromone of the Brazilian Apple Leafroller, Bonagota cranaodes Meyrick (Lepidoptera,) Tj ETQq1 1 0.784	314 rgBT /0	Dverlock 10 Ti

1.4 7

Preparation, characterization and application of a stationary chromatographic phase from a new (+)-tartaric acid derivative. Tetrahedron Letters, 2010, 51, 2258-2261.

CARL RIKARD UNELIUS

#	Article	IF	CITATIONS
73	Combining odours isolated from phylogenetically diverse sources yields a better lure for yellow jackets. Pest Management Science, 2016, 72, 760-769.	3.4	7
74	Diffusible signal factor signaling controls bioleaching activity and niche protection in the acidophilic, mineral-oxidizing leptospirilli. Scientific Reports, 2021, 11, 16275.	3.3	7
75	Climate change risk to pheromone application in pest management. Die Naturwissenschaften, 2021, 108, 47.	1.6	7
76	Antiâ€attractant activity of (+)â€ <i>trans</i> â€4â€ŧhujanol for Eurasian spruce bark beetle <i><scp>lps</scp> typographus</i> : Novel potency for females. Pest Management Science, 2022, 78, 1992-1999.	3.4	7
77	Flight and Molecular Modeling Study on the Response of Codling Moth, Cydia pomonella (Lepidoptera:) Tj ETQq1 - Section C Journal of Biosciences, 2000, 55, 1011-1017.	1 0.78431 1.4	4 rgBT /C
78	Odorant receptor phylogeny confirms conserved channels for sex pheromone and host plant signals in tortricid moths. Ecology and Evolution, 2020, 10, 7334-7348.	1.9	6
79	A Short Synthesis of Gastrolactone. Natural Product Research, 1994, 5, 61-68.	0.4	5
80	(11Z,13E)-Hexadecadien-1-yl Acetate: Sex Pheromone of the Grass Webworm Herpetogramma licarsisalis—ldentification, Synthesis, and Field Bioassays. Journal of Chemical Ecology, 2007, 33, 839-847.	1.8	5
81	Pheromone of the elm bark beetle Scolytus laevis (Coleoptera: Scolytidae): stereoisomers of 4-methyl-3-heptanol reduce interspecific competition. Chemoecology, 2010, 20, 179-187.	1.1	5
82	Comparison of Phenylacetates with Benzoates and Phenylpropanoates as Antifeedants for the Pine Weevil, <i>Hylobius abietis</i> . Journal of Agricultural and Food Chemistry, 2018, 66, 11797-11805.	5.2	5
83	Foraging niche separation of social wasps in an invaded area: Implications for their management. Journal of Applied Entomology, 2019, 143, 1115-1121.	1.8	5
84	Chemoenzymatic Dynamic Kinetic Asymmetric Transformations of βâ€Hydroxyketones. Chemistry - A European Journal, 2021, 27, 15623-15627.	3.3	4
85	Feeding Volatiles of Larval <i>Sparganothis pilleriana</i> (Lepidoptera: Tortricidae) Attract Heterospecific Adults of the European Grapevine Moth. Environmental Entomology, 2021, 50, 1286-1293.	1.4	4
86	Practical one-pot stereospecific preparation of vicinal and 1,3-diols. Tetrahedron Letters, 2017, 58, 75-77.	1.4	3
87	Selectivity in Diimide Reductions of Conjugated Enynes Acta Chemica Scandinavica, 1990, 44, 106-107.	0.7	3
88	Developing a mealybug pheromone monitoring tool to enhance IPM practices in New Zealand vineyards. Journal of Pest Science, 2023, 96, 29-39.	3.7	3
89	Sex pheromone of pear moth, Cydia pyrivora. BioControl, 1998, 43, 339-344.	2.0	2
90	Relative Attractiveness of (10E)-Dodecen-1-yl Acetate and (4E,10E)-Dodecadien-1-yl Acetate to Male Spotted Tentiform Leafminers Phyllonorycter blancardella (F.). Journal of Chemical Ecology, 2004, 30, 1827-1838.	1.8	2

#	Article	lF	CITATIONS
91	Sex pheromone of a North American population of the spotted tentiform leafminer, Phyllonorycter blancardella. Entomologia Experimentalis Et Applicata, 2005, 116, 143-148.	1.4	2
92	Dose reduction and alternatives to the phenol pheromone in monitoring and management of the grass grub <i>Costelytra zealandica</i> . Pest Management Science, 2017, 73, 2252-2258.	3.4	1
93	Olfactory Receptor Neurons for Plant Volatiles and Pheromone Compounds in the Lucerne Weevil, Sitona discoideus. Journal of Chemical Ecology, 2020, 46, 250-263.	1.8	1