
Lyle W Ostrow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1033108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ALSUntangled #63: ketogenic diets. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2023, 24, 159-163.	1.1	3
2	Loss of TDP-43 function and rimmed vacuoles persist after T cell depletion in a xenograft model of sporadic inclusion body myositis. Science Translational Medicine, 2022, 14, eabi9196.	5.8	27
3	TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A. Nature, 2022, 603, 131-137.	13.7	188
4	Clonally expanded CD8 T cells characterize amyotrophic lateral sclerosis-4. Nature, 2022, 606, 945-952.	13.7	35
5	Retromer dysfunction in amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	5
6	Nuclear export and translation of circular repeat-containing intronic RNA in C9ORF72-ALS/FTD. Nature Communications, 2021, 12, 4908.	5.8	41
7	Association of Variants in the <i>SPTLC1</i> Gene With Juvenile Amyotrophic Lateral Sclerosis. JAMA Neurology, 2021, 78, 1236.	4.5	46
8	MG53 Preserves Neuromuscular Junction Integrity and Alleviates ALS Disease Progression. Antioxidants, 2021, 10, 1522.	2.2	6
9	An integrated multi-omic analysis of iPSC-derived motor neurons from C9ORF72 ALS patients. IScience, 2021, 24, 103221.	1.9	27
10	Validation of serum neurofilaments as prognostic and potential pharmacodynamic biomarkers for ALS. Neurology, 2020, 95, e59-e69.	1.5	119
11	Diseases of the nERVous system: retrotransposon activity in neurodegenerative disease. Mobile DNA, 2019, 10, 32.	1.3	91
12	Postmortem Cortex Samples Identify Distinct Molecular Subtypes of ALS: Retrotransposon Activation, Oxidative Stress, and Activated Glia. Cell Reports, 2019, 29, 1164-1177.e5.	2.9	184
13	Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis. Annals of Neurology, 2019, 85, 470-481.	2.8	118
14	Teaching NeuroImages: Neurolymphomatosis. Neurology, 2019, 93, e1229-e1230.	1.5	0
15	Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 2018, 97, 1268-1283.e6.	3.8	517
16	Properties of LINE-1 proteins and repeat element expression in the context of amyotrophic lateral sclerosis. Mobile DNA, 2018, 9, 35.	1.3	37
17	Transcriptional profiling of HERV-K(HML-2) in amyotrophic lateral sclerosis and potential implications for expression of HML-2 proteins. Molecular Neurodegeneration, 2018, 13, 39.	4.4	47
18	Unexpected similarities between C9ORF72 and sporadic forms of ALS/FTD suggest a common disease mechanism. ELife, 2018, 7, .	2.8	53

Lyle W Ostrow

#	Article	IF	CITATIONS
19	S-acylation of SOD1, CCS, and a stable SOD1-CCS heterodimer in human spinal cords from ALS and non-ALS subjects. Scientific Reports, 2017, 7, 41141.	1.6	12
20	Distinct conformers of transmissible misfolded SOD1 distinguish human SOD1-FALS from other forms of familial and sporadic ALS. Acta Neuropathologica, 2016, 132, 827-840.	3.9	42
21	Disseminated zoster with paresis in a multiple sclerosis patient treated with dimethyl fumarate. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e203.	3.1	13
22	Editorial by concerned physicians: Unintended effect of the orphan drug act on the potential cost of 3,4-diaminopyridine. Muscle and Nerve, 2016, 53, 165-168.	1.0	24
23	Human endogenous retrovirus-K contributes to motor neuron disease. Science Translational Medicine, 2015, 7, 307ra153.	5.8	369
24	Loss of RAD-23 Protects Against Models of Motor Neuron Disease by Enhancing Mutant Protein Clearance. Journal of Neuroscience, 2015, 35, 14286-14306.	1.7	23
25	The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature, 2015, 525, 56-61.	13.7	835
26	An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurology, The, 2013, 12, 435-442.	4.9	534
27	Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nature Neuroscience, 2013, 16, 571-579.	7.1	485
28	latrogenic Exserohilum infection of the central nervous system: mycological identification and histopathological findings. Modern Pathology, 2013, 26, 166-170.	2.9	23
29	ALS Untangled No. 20: The Deanna Protocol. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 319-323.	1.1	19
30	RAN proteins and RNA foci from antisense transcripts in <i>C9ORF72</i> ALS and frontotemporal dementia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4968-77.	3.3	681
31	Fatal <i>Exserohilum</i> Meningitis and Central Nervous System Vasculitis After Cervical Epidural Methylprednisolone Injection. Annals of Internal Medicine, 2012, 157, 835.	2.0	24
32	Expanding the spectrum of monoclonal light chain deposition disease in muscle. Muscle and Nerve, 2012, 45, 755-761.	1.0	15
33	Tonic status and electrodecremental paroxysms in an adult without epilepsy. Epileptic Disorders, 2011, 13, 99-101.	0.7	3
34	Stretch induced endothelin-1 secretion by adult rat astrocytes involves calcium influx via stretch-activated ion channels (SACs). Biochemical and Biophysical Research Communications, 2011, 410, 81-86.	1.0	43
35	Eastchester clapping sign: A novel test of parietal neglect. Annals of Neurology, 2009, 66, 114-117.	2.8	14
36	Mechanosensation and endothelin in astrocytes—hypothetical roles in CNS pathophysiology. Brain Research Reviews, 2005, 48, 488-508.	9.1	87

Lyle W Ostrow

#	Article	IF	CITATIONS
37	Mechanosensitive Ion Channels as Drug Targets. CNS and Neurological Disorders, 2004, 3, 287-295.	4.3	40
38	Stretch-Induced Endothelin-1 Production by Astrocytes. Journal of Cardiovascular Pharmacology, 2000, 36, S274-S277.	0.8	26