
Andrew Escayg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1032998/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cannabidiol Increases Seizure Resistance and Improves Behavior in an Scn8a Mouse Model. Frontiers in Pharmacology, 2022, 13, 815950.	3.5	6
2	Mice lacking full length Adgrb1 (Bai1) exhibit social deficits, increased seizure susceptibility, and altered brain development. Experimental Neurology, 2022, 351, 113994.	4.1	9
3	Nanoparticle encapsulated oxytocin increases resistance to induced seizures and restores social behavior in Scn1a-derived epilepsy. Neurobiology of Disease, 2021, 147, 105147.	4.4	21
4	Autistic-like behavior, spontaneous seizures, and increased neuronal excitability in a Scn8a mouse model. Neuropsychopharmacology, 2021, 46, 2011-2020.	5.4	7
5	Allosteric modulation of the cannabinoid 2 receptor confers seizure resistance in mice. Neuropharmacology, 2021, 188, 108448.	4.1	15
6	Extracellular vesicles in the treatment of neurological disorders. Neurobiology of Disease, 2021, 157, 105445.	4.4	28
7	Pathogenic in-Frame Variants in SCN8A: Expanding the Genetic Landscape of SCN8A-Associated Disease. Frontiers in Pharmacology, 2021, 12, 748415.	3.5	1
8	Mutations in the Scn8a DIIS4 voltage sensor reveal new distinctions among hypomorphic and null Na v 1.6 sodium channels. Genes, Brain and Behavior, 2020, 19, e12612.	2.2	7
9	Transcriptomic and epigenomic dynamics associated with development of human iPSC-derived GABAergic interneurons. Human Molecular Genetics, 2020, 29, 2579-2595.	2.9	3
10	Noradrenergic Transmission at Alpha1-Adrenergic Receptors in the Ventral Periaqueductal Gray Modulates Arousal. Biological Psychiatry, 2019, 85, 237-247.	1.3	49
11	Donepezil increases resistance to induced seizures in a mouse model of Dravet syndrome. Annals of Clinical and Translational Neurology, 2019, 6, 1566-1571.	3.7	16
12	A two-hit story: Seizures and genetic mutation interaction sets phenotype severity in SCN1A epilepsies. Neurobiology of Disease, 2019, 125, 31-44.	4.4	51
13	Reply: Novel GABRA2 variants in epileptic encephalopathy and intellectual disability with seizures. Brain, 2019, 142, e16-e16.	7.6	4
14	From DREADD to Treatment in Temporal Lobe Epilepsy. Epilepsy Currents, 2019, 19, 47-48.	0.8	1
15	Reduced cannabinoid 2 receptor activity increases susceptibility to induced seizures in mice. Epilepsia, 2019, 60, 2359-2369.	5.1	29
16	Selective targeting of Scn8a prevents seizure development in a mouse model of mesial temporal lobe epilepsy. Scientific Reports, 2018, 8, 126.	3.3	28
17	Epileptic Encephalopathy and Cerebellar Atrophy Resulting from Compound Heterozygous CACNA2D2 Variants. Case Reports in Genetics, 2018, 2018, 1-4.	0.2	16
18	De novo variants in GABRA2 and GABRA5 alter receptor function and contribute to early-onset epilepsy. Brain, 2018, 141, 2392-2405.	7.6	71

ANDREW ESCAYG

#	Article	IF	CITATIONS
19	<i><scp>SLC</scp>6A1</i> variants identified in epilepsy patients reduce γâ€aminobutyric acid transport. Epilepsia, 2018, 59, e135-e141.	5.1	35
20	Regulation of Thalamic and Cortical Network Synchrony by Scn8a. Neuron, 2017, 93, 1165-1179.e6.	8.1	93
21	SCN3A deficiency associated with increased seizure susceptibility. Neurobiology of Disease, 2017, 102, 38-48.	4.4	48
22	Early-life febrile seizures worsen adult phenotypes in Scn1a mutants. Experimental Neurology, 2017, 293, 159-171.	4.1	47
23	Diagnostic Yield From 339 Epilepsy Patients Screened on a Clinical Gene Panel. Pediatric Neurology, 2017, 77, 61-66.	2.1	83
24	GPR37L1 modulates seizure susceptibility: Evidence from mouse studies and analyses of a human GPR37L1 variant. Neurobiology of Disease, 2017, 106, 181-190.	4.4	38
25	The RNA-binding protein, ZC3H14, is required for proper poly(A) tail length control, expression of synaptic proteins, and brain function in mice. Human Molecular Genetics, 2017, 26, 3663-3681.	2.9	31
26	De novo and inherited SCN8A epilepsy mutations detected by gene panel analysis. Epilepsy Research, 2017, 129, 17-25.	1.6	34
27	Turning up the Heat on Endocannabinoid Signaling. Epilepsy Currents, 2016, 16, 414-415.	0.8	0
28	<i>Fgf13</i> Identified as a Novel Cause of GEFS+. Epilepsy Currents, 2016, 16, 112-113.	0.8	1
29	Huperzine A Provides Robust and Sustained Protection against Induced Seizures in Scn1a Mutant Mice. Frontiers in Pharmacology, 2016, 7, 357.	3.5	33
30	An Scn1a epilepsy mutation in Scn8a alters seizure susceptibility and behavior. Experimental Neurology, 2016, 275, 46-58.	4.1	20
31	Complex Genetic Interactions in a Mouse Model of Absence Epilepsy. Epilepsy Currents, 2015, 15, 50-51.	0.8	0
32	Illuminating the Cerebellum as a Potential Target for Treating Epilepsy. Epilepsy Currents, 2015, 15, 277-278.	0.8	7
33	Toward Routine Genetics-Based Diagnoses for the Epileptic Encephalopathies. Epilepsy Currents, 2014, 14, 158-160.	0.8	1
34	Impaired Action Potential Initiation in GABAergic Interneurons Causes Hyperexcitable Networks in an Epileptic Mouse Model Carrying a Human Na _V 1.1 Mutation. Journal of Neuroscience, 2014, 34, 14874-14889.	3.6	138
35	Na _v 1.1 Modulation by a Novel Triazole Compound Attenuates Epileptic Seizures in Rodents. ACS Chemical Biology, 2014, 9, 1204-1212.	3.4	41
36	Role of the hippocampus in Nav1.6 (Scn8a) mediated seizure resistance. Neurobiology of Disease, 2014, 68, 16-25.	4.4	41

3

ANDREW ESCAYG

#	Article	IF	CITATIONS
37	Scn8a voltage-gated sodium channel mutation alters seizure and anxiety responses to acute stress. Psychoneuroendocrinology, 2014, 39, 225-236.	2.7	11
38	Effects of an epilepsy-causing mutation in the SCN1A sodium channel gene on cocaine-induced seizure susceptibility in mice. Psychopharmacology, 2013, 228, 263-270.	3.1	12
39	Preferential inactivation of Scn1a in parvalbumin interneurons increases seizure susceptibility. Neurobiology of Disease, 2013, 49, 211-220.	4.4	106
40	Altered sleep regulation in a mouse model of <scp><i>SCN1A</i></scp> <i>â€</i> derived genetic epilepsy with febrile seizures plus (<scp>GEFS</scp> +). Epilepsia, 2013, 54, 625-634.	5.1	45
41	Glyoxalase 1 and its substrate methylglyoxal are novel regulators of seizure susceptibility. Epilepsia, 2013, 54, 649-657.	5.1	29
42	Essential role of PIKE GTPases in neuronal protection against excitotoxic insults. Advances in Biological Regulation, 2012, 52, 66-76.	2.3	11
43	Protective effect of the ketogenic diet in Scn1a mutant mice. Epilepsia, 2011, 52, 2050-2056.	5.1	51
44	Neuronal voltage-gated ion channels are genetic modifiers of generalized epilepsy with febrile seizures plus. Neurobiology of Disease, 2011, 41, 655-660.	4.4	78
45	Stress and Epilepsy: Multiple Models, Multiple Outcomes. Journal of Clinical Neurophysiology, 2010, 27, 445-452.	1.7	38
46	Sodium channel <i>SCN1A</i> and epilepsy: Mutations and mechanisms. Epilepsia, 2010, 51, 1650-1658.	5.1	338
47	Dysfunction of the Scn8a Voltage-gated Sodium Channel Alters Sleep Architecture, Reduces Diurnal Corticosterone Levels, and Enhances Spatial Memory. Journal of Biological Chemistry, 2010, 285, 16553-16561.	3.4	37
48	Altered Function of the SCN1A Voltage-gated Sodium Channel Leads to Î ³ -Aminobutyric Acid-ergic (GABAergic) Interneuron Abnormalities. Journal of Biological Chemistry, 2010, 285, 9823-9834.	3.4	200
49	Heterozygous mutations of the voltage-gated sodium channel SCN8A are associated with spike-wave discharges and absence epilepsy in mice. Human Molecular Genetics, 2009, 18, 1633-1641.	2.9	110
50	A BAC transgenic mouse model reveals neuron subtype-specific effects of a Generalized Epilepsy with Febrile Seizures Plus (GEFS+) mutation. Neurobiology of Disease, 2009, 35, 91-102.	4.4	91
51	Mutation analysis of the hyperpolarization-activated cyclic nucleotide-gated channels HCN1 and HCN2 in idiopathic generalized epilepsy. Neurobiology of Disease, 2008, 29, 59-70.	4.4	58
52	Mutations of Voltage-gated Sodium Channels in Movement Disorders and Epilepsy. Novartis Foundation Symposium, 2008, , 72-86.	1.1	20
53	Characterization of 5′ untranslated regions of the voltage-gated sodium channels SCN1A, SCN2A, and SCN3A and identification of cis-conserved noncoding sequences. Genomics, 2007, 90, 225-235.	2.9	29
54	The voltage-gated sodium channel Scn8a is a genetic modifier of severe myoclonic epilepsy of infancy. Human Molecular Genetics, 2007, 16, 2892-2899.	2.9	180

ANDREW ESCAYG

#	Article	IF	CITATIONS
55	Recurrent De Novo Mutations of SCN1A in Severe Myoclonic Epilepsy of Infancy. Pediatric Neurology, 2006, 34, 116-120.	2.1	53
56	Migrainous Vertigo: Mutation Analysis of the Candidate Genes CACNA1A, ATP1A2, SCN1A, and CACNB4. Headache, 2006, 46, 1136-1141.	3.9	77
57	Subthreshold changes of voltage-dependent activation of the KV7.2 channel in neonatal epilepsy. Neurobiology of Disease, 2006, 24, 194-201.	4.4	33
58	An Epilepsy Mutation in the Sodium Channel SCN1A That Decreases Channel Excitability. Journal of Neuroscience, 2006, 26, 2714-2723.	3.6	82
59	A Novel SCN1A Mutation Associated with Generalized Epilepsy with Febrile Seizures Plus—and Prevalence of Variants in Patients with Epilepsy. American Journal of Human Genetics, 2001, 68, 866-873.	6.2	254
60	Functional Effects of Two Voltage-Gated Sodium Channel Mutations That Cause Generalized Epilepsy with Febrile Seizures Plus Type 2. Journal of Neuroscience, 2001, 21, 7481-7490.	3.6	173
61	Identification of Epilepsy Genes in Human and Mouse. Annual Review of Genetics, 2001, 35, 567-588.	7.6	130
62	Sodium Channels and Neurological Disease: Insights from Scn8a Mutations in the Mouse. Neuroscientist, 2001, 7, 136-145.	3.5	58
63	Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nature Genetics, 2000, 24, 343-345.	21.4	910
64	The mouse neurological mutant flailer expresses a novel hybrid gene derived by exon shuffling between Gnb5 and Myo5a. Human Molecular Genetics, 2000, 9, 821-828.	2.9	28
65	Coding and Noncoding Variation of the Human Calcium-Channel β4-Subunit Gene CACNB4 in Patients with Idiopathic Generalized Epilepsy and Episodic Ataxia. American Journal of Human Genetics, 2000, 66, 1531-1539.	6.2	382
66	Coding Sequence, Genomic Organization, and Conserved Chromosomal Localization of the Mouse Gene Scn11a Encoding the Sodium Channel NaN. Genomics, 1999, 59, 309-318.	2.9	51
67	Calcium Channel β4 (CACNB4): Human Ortholog of the Mouse Epilepsy Genelethargic. Genomics, 1998, 50, 14-22.	2.9	26
68	Ion Channel Mutations in Mouse Models of Inherited Neurological Disease. Annals of Medicine, 1997, 29, 569-574.	3.8	31
69	Novel Missense CNTNAP2 Variant Identified in Two Consanguineous Pakistani Families With Developmental Delay, Epilepsy, Intellectual Disability, and Aggressive Behavior. Frontiers in Neurology, 0, 13	2.4	5