
Zengyan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1032687/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The <scp>ERF</scp> transcription factor Ta <scp>ERF</scp> 3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnology Journal, 2014, 12, 468-479.	4.1	246
2	An R2R3 <scp>MYB</scp> transcription factor in wheat, Ta <scp>PIMP</scp> 1, mediates host resistance to <i>Bipolaris sorokiniana</i> and drought stresses through regulation of defense―and stressâ€related genes. New Phytologist, 2012, 196, 1155-1170.	3.5	185
3	The Wheat Ethylene Response Factor Transcription Factor PATHOGEN-INDUCED ERF1 Mediates Host Responses to Both the Necrotrophic Pathogen <i>Rhizoctonia cerealis</i> and Freezing Stresses. Plant Physiology, 2014, 164, 1499-1514.	2.3	172
4	Overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat. Journal of Experimental Botany, 2008, 59, 4195-4204.	2.4	116
5	Expression of a wheat MYB gene in transgenic tobacco enhances resistance to Ralstonia solanacearum, and to drought and salt stresses. Functional and Integrative Genomics, 2011, 11, 431-443.	1.4	110
6	Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Functional and Integrative Genomics, 2011, 11, 63-70.	1.4	95
7	Overexpression of TaPIEP1, a pathogen-induced ERF gene of wheat, confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana. Functional and Integrative Genomics, 2010, 10, 215-226.	1.4	94
8	A novel ERF transcription activator in wheat and its induction kinetics after pathogen and hormone treatments. Journal of Experimental Botany, 2007, 58, 2993-3003.	2.4	89
9	Transcript suppression of TaGW2 increased grain width and weight in bread wheat. Functional and Integrative Genomics, 2014, 14, 341-349.	1.4	87
10	Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease. Journal of Experimental Botany, 2013, 64, 2243-2253.	2.4	80
11	The wheat <scp>NB</scp> â€ <scp>LRR</scp> gene <i>Ta<scp>RCR</scp>1</i> is required for host defence response to the necrotrophic fungal pathogen <i>Rhizoctonia cerealis</i> . Plant Biotechnology Journal, 2017, 15, 674-687.	4.1	72
12	A wheat caffeic acid 3-O-methyltransferase TaCOMT-3D positively contributes to both resistance to sharp eyespot disease and stem mechanical strength. Scientific Reports, 2018, 8, 6543.	1.6	71
13	The wheat R2R3-MYB transcription factor TaRIM1 participates in resistance response against the pathogen Rhizoctonia cerealis infection through regulating defense genes. Scientific Reports, 2016, 6, 28777.	1.6	65
14	Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat. Functional and Integrative Genomics, 2012, 12, 481-488.	1.4	62
15	The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen <i>Rhizoctonia cerealis</i> . Journal of Experimental Botany, 2015, 66, 6591-6603.	2.4	62
16	lsolation and characterization of a novel wheat cysteine-rich receptor-like kinase gene induced by Rhizoctonia cerealis. Scientific Reports, 2013, 3, 3021.	1.6	53
17	Constitutive expression of a stabilized transcription factor group VII ethylene response factor enhances waterlogging tolerance in wheat without penalizing grain yield. Plant, Cell and Environment, 2019, 42, 1471-1485.	2.8	48
18	A Wheat Cinnamyl Alcohol Dehydrogenase TaCAD12 Contributes to Host Resistance to the Sharp Eyespot Disease. Frontiers in Plant Science, 2016, 7, 1723.	1.7	47

ZENGYAN ZHANG

#	Article	IF	CITATIONS
19	Identification and antifungal assay of a wheat β-1,3-glucanase. Biotechnology Letters, 2009, 31, 1005-1010.	1.1	44
20	Expression of a potato antimicrobial peptide SN1 increases resistance to take-all pathogen Gaeumannomyces graminis var. tritici in transgenic wheat. Functional and Integrative Genomics, 2013, 13, 403-409.	1.4	43
21	Research progress in BYDV resistance genes derived from wheat and its wild relatives. Journal of Genetics and Genomics, 2009, 36, 567-573.	1.7	41
22	A novel activator-type ERF of Thinopyrum intermedium, TiERF1, positively regulates defence responses. Journal of Experimental Botany, 2008, 59, 3111-3120.	2.4	36
23	The wheat calciumâ€dependent protein kinase TaCPK7â€D positively regulates host resistance to sharp eyespot disease. Molecular Plant Pathology, 2016, 17, 1252-1264.	2.0	35
24	Development of novel PCR markers linked to the BYDV resistance gene Bdv2 useful in wheat for marker-assisted selection. Theoretical and Applied Genetics, 2004, 109, 433-439.	1.8	34
25	Genome-Wide Identification and Expression Analysis of Cutinase Gene Family in Rhizoctonia cerealis and Functional Study of an Active Cutinase RcCUT1 in the Fungal–Wheat Interaction. Frontiers in Microbiology, 2018, 9, 1813.	1.5	31
26	TaPIMP2, a pathogen-induced MYB protein in wheat, contributes to host resistance to common root rot caused by Bipolaris sorokiniana. Scientific Reports, 2017, 7, 1754.	1.6	28
27	Isolation and characterization of a novel wall-associated kinase gene TaWAK5 in wheat (Triticum) Tj ETQq1 1 0.78	4314 rgB1 2.3	l /Qverlock
28	The cysteine-rich receptor-like kinase TaCRK3 contributes to defense against <i>Rhizoctonia cerealis</i> in wheat. Journal of Experimental Botany, 2021, 72, 6904-6919.	2.4	24
29	The wheat LLM-domain-containing transcription factor TaGATA1 positively modulates host immune response to Rhizoctonia cerealis. Journal of Experimental Botany, 2020, 71, 344-355.	2.4	21
30	Mapping of a BYDV resistance gene fromThinopyrum intermedium in wheat background by molecular markers. Science in China Series C: Life Sciences, 1999, 42, 663-668.	1.3	20
31	Silencing of the Wheat Protein Phosphatase 2A Catalytic Subunit TaPP2Ac Enhances Host Resistance to the Necrotrophic Pathogen Rhizoctonia cerealis. Frontiers in Plant Science, 2018, 9, 1437.	1.7	19
32	Wheat resistome in response to barley yellow dwarf virus infection. Functional and Integrative Genomics, 2013, 13, 155-165.	1.4	18
33	GmPGIP3 enhanced resistance to both take-all and common root rot diseases in transgenic wheat. Functional and Integrative Genomics, 2015, 15, 375-381.	1.4	18
34	Molecular and Ultrastructural Mechanisms Underlying Yellow Dwarf Symptom Formation in Wheat after Infection of Barley Yellow Dwarf Virus. International Journal of Molecular Sciences, 2018, 19, 1187.	1.8	18
35	Overexpression of <i>TaSTT3bâ€2B</i> improves resistance to sharp eyespot and increases grain weight in wheat. Plant Biotechnology Journal, 2022, 20, 777-793.	4.1	18
36	TaCML36, a wheat calmodulin-like protein, positively participates in an immune response to Rhizoctonia cerealis. Crop Journal, 2019, 7, 608-618.	2.3	16

ZENGYAN ZHANG

#	Article	IF	CITATIONS
37	The Wall-Associated Receptor-Like Kinase TaWAK7D Is Required for Defense Responses to Rhizoctonia cerealis in Wheat. International Journal of Molecular Sciences, 2021, 22, 5629.	1.8	14
38	The Cysteine-Rich Repeat Protein TaCRR1 Participates in Defense against Both Rhizoctonia cerealis and Bipolaris sorokiniana in Wheat. International Journal of Molecular Sciences, 2020, 21, 5698.	1.8	13
39	Identification and molecular mapping of a resistance gene to powdery mildew from the synthetic wheat line M53. Journal of Applied Genetics, 2011, 52, 137-143.	1.0	12
40	Global Characterization of GH10 Family Xylanase Genes in Rhizoctonia cerealis and Functional Analysis of Xylanase RcXYN1 During Fungus Infection in Wheat. International Journal of Molecular Sciences, 2020, 21, 1812.	1.8	10
41	The mitogen-activated protein kinase kinase TaMKK5 mediates immunity via the TaMKK5–TaMPK3–TaERF3 module. Plant Physiology, 2021, 187, 2323-2337.	2.3	10
42	The Wheat Wall-Associated Receptor-Like Kinase TaWAK-6D Mediates Broad Resistance to Two Fungal Pathogens Fusarium pseudograminearum and Rhizoctonia cerealis. Frontiers in Plant Science, 2021, 12, 758196.	1.7	10
43	TaWAK2A-800, a Wall-Associated Kinase, Participates Positively in Resistance to Fusarium Head Blight and Sharp Eyespot in Wheat. International Journal of Molecular Sciences, 2021, 22, 11493.	1.8	9
44	Molecular mapping of a stripe rust resistance gene in wheat line C51. Journal of Genetics, 2014, 93, 443-450.	0.4	7
45	Ecotopic Expression of the Antimicrobial Peptide DmAMP1W Improves Resistance of Transgenic Wheat to Two Diseases: Sharp Eyespot and Common Root Rot. International Journal of Molecular Sciences, 2020, 21, 647.	1.8	7
46	Genome-Wide Identification of M35 Family Metalloproteases in Rhizoctonia cerealis and Functional Analysis of RcMEP2 as a Virulence Factor during the Fungal Infection to Wheat. International Journal of Molecular Sciences, 2020, 21, 2984.	1.8	6
47	The Receptor-like Kinase TaCRK-7A Inhibits Fusarium pseudograminearum Growth and Mediates Resistance to Fusarium Crown Rot in Wheat. Biology, 2021, 10, 1122.	1.3	6
48	Development and identification of wheat-Ag.pulcherrimum addition line and substitution line with BYDV resistance. Science in China Series C: Life Sciences, 1999, 42, 178-184.	1.3	5
49	Wheat Elongator subunit 4 is required for epigenetic regulation of host immune response to Rhizoctonia cerealis. Crop Journal, 2020, 8, 565-576.	2.3	5
50	The Pathogen-Induced MATE Gene TaPIMA1 Is Required for Defense Responses to Rhizoctonia cerealis in Wheat. International Journal of Molecular Sciences, 2022, 23, 3377.	1.8	4
51	Powdery Mildew Resistance in Wheat Cultivar Mv HombÃ;r is Conferred by a New Gene, <i>PmHo</i> . Phytopathology, 2016, 106, 1326-1334.	1.1	3
52	Investigation of the mechanism of adult-stage resistance to barley yellow dwarf virus associated with a wheat–Thinopyrum intermedium translocation. Crop Journal, 2018, 6, 394-405.	2.3	2