Elke Decrock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1032063/publications.pdf Version: 2024-02-01

FIRE DECROCK

#	Article	IF	CITATIONS
1	Intracellular calcium changes trigger connexin 32 hemichannel opening. EMBO Journal, 2006, 25, 34-44.	7.8	250
2	Selective inhibition of Cx43 hemichannels by Gap19 and its impact on myocardial ischemia/reperfusion injury. Basic Research in Cardiology, 2013, 108, 309.	5.9	216
3	Ca2+ regulation of connexin 43 hemichannels in C6 glioma and glial cells. Cell Calcium, 2009, 46, 176-187.	2.4	191
4	Paracrine signaling through plasma membrane hemichannels. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 35-50.	2.6	177
5	Connexin Hemichannels and Gap Junction Channels Are Differentially Influenced by Lipopolysaccharide and Basic Fibroblast Growth Factor. Molecular Biology of the Cell, 2007, 18, 34-46.	2.1	172
6	Endothelial calcium dynamics, connexin channels and blood–brain barrier function. Progress in Neurobiology, 2013, 108, 1-20.	5.7	141
7	Connexin Channels Provide a Target to Manipulate Brain Endothelial Calcium Dynamics and Blood—Brain Barrier Permeability. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1942-1957.	4.3	135
8	Connexin mimetic peptides inhibit Cx43 hemichannel opening triggered by voltage and intracellular Ca2+ elevation. Basic Research in Cardiology, 2012, 107, 304.	5.9	132
9	Into rather unexplored terrain—transcellular transport across the blood–brain barrier. Glia, 2016, 64, 1097-1123.	4.9	118
10	Connexin targeting peptides as inhibitors of voltage- and intracellular Ca2+-triggered Cx43 hemichannel opening. Neuropharmacology, 2013, 75, 506-516.	4.1	108
11	The BH4 Domain of Anti-apoptotic Bcl-XL, but Not That of the Related Bcl-2, Limits the Voltage-dependent Anion Channel 1 (VDAC1)-mediated Transfer of Pro-apoptotic Ca2+ Signals to Mitochondria. Journal of Biological Chemistry, 2015, 290, 9150-9161.	3.4	108
12	Connexin 43 Hemichannels Contribute to Cytoplasmic Ca2+ Oscillations by Providing a Bimodal Ca2+-dependent Ca2+ Entry Pathway. Journal of Biological Chemistry, 2012, 287, 12250-12266.	3.4	105
13	Connexins and their channels in inflammation. Critical Reviews in Biochemistry and Molecular Biology, 2016, 51, 413-439.	5.2	93
14	Non-channel functions of connexins in cell growth and cell death. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2002-2008.	2.6	90
15	Pannexin1 as mediator of inflammation and cell death. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 51-61.	4.1	85
16	The dual face of connexin-based astroglial Ca2+ communication: A key player in brain physiology and a prime target in pathology. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2211-2232.	4.1	74
17	A new angle on blood–CNS interfaces: A role for connexins?. FEBS Letters, 2014, 588, 1259-1270.	2.8	72
18	Calcium and connexin-based intercellular communication, a deadly catch?. Cell Calcium, 2011, 50, 310-321.	2.4	64

Elke Decrock

#	Article	IF	CITATIONS
19	Connexin and pannexin signaling pathways, an architectural blueprint for CNS physiology and pathology?. Cellular and Molecular Life Sciences, 2015, 72, 2823-2851.	5.4	61
20	Bcl-2 binds to and inhibits ryanodine receptors. Journal of Cell Science, 2014, 127, 2782-92.	2.0	55
21	IP3, a small molecule with a powerful message. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1772-1786.	4.1	49
22	Calcium, oxidative stress and connexin channels, a harmonious orchestra directing the response to radiotherapy treatment?. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1099-1120.	4.1	48
23	Connexin and pannexin (hemi)channels in the liver. Frontiers in Physiology, 2014, 4, 405.	2.8	45
24	At the cross-point of connexins, calcium, and ATP: blocking hemichannels inhibits vasoconstriction of rat small mesenteric arteries. Cardiovascular Research, 2017, 113, 195-206.	3.8	37
25	Cx43 channels and signaling via IP3/Ca2+, ATP, and ROS/NO propagate radiation-induced DNA damage to non-irradiated brain microvascular endothelial cells. Cell Death and Disease, 2020, 11, 194.	6.3	34
26	Inhibition of connexin hemichannels alleviates non-alcoholic steatohepatitis in mice. Scientific Reports, 2017, 7, 8268.	3.3	33
27	Intracellular Cleavage of the Cx43 C-Terminal Domain by Matrix-Metalloproteases: A Novel Contributor to Inflammation?. Mediators of Inflammation, 2015, 2015, 1-18.	3.0	32
28	Connexin32 hemichannels contribute to the apoptotic-to-necrotic transition during Fas-mediated hepatocyte cell death. Cellular and Molecular Life Sciences, 2010, 67, 907-918.	5.4	31
29	Connexin hemichannel inhibition reduces acetaminophen-induced liver injury in mice. Toxicology Letters, 2017, 278, 30-37.	0.8	31
30	Ryanodine receptors are targeted by anti-apoptotic Bcl-XL involving its BH4 domain and Lys87 from its BH3 domain. Scientific Reports, 2015, 5, 9641.	3.3	30
31	18F-fluoromethylcholine (FCho), 18F-fluoroethyltyrosine (FET), and 18F-fluorodeoxyglucose (FDG) for the discrimination between high-grade glioma and radiation necrosis in rats: A PET study. Nuclear Medicine and Biology, 2015, 42, 38-45.	0.6	30
32	Connexin43 Hemichannel Targeting With TAT-Gap19 Alleviates Radiation-Induced Endothelial Cell Damage. Frontiers in Pharmacology, 2020, 11, 212.	3.5	27
33	Single and fractionated ionizing radiation induce alterations in endothelial connexin expression and channel function. Scientific Reports, 2019, 9, 4643.	3.3	26
34	Blocking connexin43 hemichannels protects mice against tumour necrosis factor-induced inflammatory shock. Scientific Reports, 2019, 9, 16623.	3.3	24
35	Structure, Regulation and Function of Gap Junctions in Liver. Cell Communication and Adhesion, 2015, 22, 29-37.	1.0	18
36	Noninvasive Whole-Body Imaging of Phosphatidylethanolamine as a Cell Death Marker Using ^{99m} Tc-Duramycin During TNF-Induced SIRS. Journal of Nuclear Medicine, 2018, 59, 1140-1145.	5.0	18

Elke Decrock

#	Article	IF	CITATIONS
37	Calcium, a pivotal player in photodynamic therapy?. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1805-1814.	4.1	15
38	Blocking connexin channels improves embryo development of vitrified bovine blastocystsâ€. Biology of Reproduction, 2017, 96, 288-301.	2.7	14
39	The BH4 domain of Bcl-2 orthologues from different classes of vertebrates can act as an evolutionary conserved inhibitor of IP3 receptor channels. Cell Calcium, 2017, 62, 41-46.	2.4	11
40	Flash Photolysis of Caged IP ₃ to Trigger Intercellular Ca ²⁺ Waves. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot076570.	0.3	9
41	Xâ€'irradiation induces acute and early term inflammatory responses in atherosclerosis‑prone ApoE‒/‑ mice and in endothelial cells. Molecular Medicine Reports, 2021, 23, .	2.4	8
42	Electroporation Loading of Membrane-Impermeable Molecules to Investigate Intra- and Intercellular Ca ²⁺ Signaling. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot076562.	0.3	7
43	Species-dependent extracranial manifestations of a brain seeking breast cancer cell line. PLoS ONE, 2018, 13, e0208340.	2.5	7
44	Electroporation Loading and Flash Photolysis to Investigate Intra- and Intercellular Ca2+Signaling. Cold Spring Harbor Protocols, 2015, 2015, pdb.top066068.	0.3	5
45	Electroporation Loading and Dye Transfer: A Safe and Robust Method to Probe Gap Junctional Coupling. Methods in Molecular Biology, 2016, 1437, 155-169.	0.9	3