Bandameeda Ramesh Naidu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1031778/publications.pdf

Version: 2024-02-01

1040056 996975 19 235 9 15 citations g-index h-index papers 19 19 19 111 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highly economic and waste valorization strategy for multicomponent and Knoevenagel reactions using water extract of tamarind seed ash. Environmental Science and Pollution Research, 2023, 30, 71420-71429.	5.3	5
2	Tamarindus indica seed ash extract for C–C coupling under added organics and volatile organic solvent-free conditions: a waste repurposing technique for Suzuki–Miyaura reaction. Environmental Science and Pollution Research, 2023, 30, 71430-71438.	5. 3	1
3	Oxidative Iododeborylation Reaction of (Hetero)arylboronic Acids in Water Extract of Pomegranate Ash: A Novel and Sustainable Synthesis of Iodo(hetero)arenes. Waste and Biomass Valorization, 2022, 13, 2207-2216.	3.4	8
4	A rapid-room temperature synthesis of \hat{l} ±-cyanoacrylates, \hat{l} ±-cyanoacrylonitriles and 4H-pyrans using water extract of pomegranate ash as catalytic media. Sustainable Chemistry and Pharmacy, 2022, 25, 100610.	3.3	5
5	Cul in biorenewable basic medium: Three novel and low E-factor Suzuki-Miyaura cross-coupling reactions. Molecular Catalysis, 2022, 522, 112237.	2.0	8
6	A waste valorization strategy for the synthesis of phenols from (hetero)arylboronic acids using pomegranate peel ash extract. Green Chemistry Letters and Reviews, 2022, 15, 426-435.	4.7	5
7	A Review on the Catalytic Applications of Polyaniline Supported Palladium (Pd@PANI) in C–C Coupling Reactions. Current Organic Chemistry, 2022, 26, .	1.6	1
8	Dried water extract of pomegranate peel ash (DWEPA) as novel and biorenewable heterogeneous catalyst for biodiesel production and biopotent quinoxalines synthesis. Bioresource Technology Reports, 2022, 18, 101107.	2.7	5
9	Pd-catalyzed oxidative homocoupling of arylboronic acids in WEPA: A sustainable access to symmetrical biaryls under added base and ligand-free ambient conditions. Molecular Catalysis, 2021, 501, 111366.	2.0	14
10	Structure controlled Au@Pd NPs/rGO as robust heterogeneous catalyst for Suzuki coupling in biowasteâ€derived water extract of pomegranate ash. Applied Organometallic Chemistry, 2021, 35, e6188.	3.5	13
11	Pd(5%)-KIT-6, Pd(5%)-SBA-15 and Pd(5%)-SBA-16 catalysts in water extract of pomegranate ash: A case study in heterogenization of Suzuki-Miyaura reaction under external base and ligand free conditions. Sustainable Chemistry and Pharmacy, 2021, 19, 100371.	3.3	22
12	Water extract of pomegranate ash as waste-originated biorenewable catalyst for the novel synthesis of chiral tertâ€'butanesulfinyl aldimines in water. Molecular Catalysis, 2021, 511, 111719.	2.0	18
13	Porphyrin N-Pincer Pd(II)-Complexes in Water: A Base-Free and Nature-Inspired Protocol for the Oxidative Self-Coupling of Potassium Aryltrifluoroborates in Open-Air. Molecules, 2021, 26, 5390.	3.8	8
14	Water extract of pomegranate ash–I ₂ as sustainable system for external oxidant/metal/catalyst-free oxidative iodination of (hetero)arenes. Green Chemistry Letters and Reviews, 2021, 14, 700-712.	4.7	18
15	Palladiumâ€catalysed roomâ€temperature Suzuki–Miyaura coupling in water extract of pomegranate ash, a bioâ€derived sustainable and renewable medium. Applied Organometallic Chemistry, 2019, 33, e5126.	3 . 5	23
16	Added catalyst-free, versatile and environment beneficial bromination of (hetero)aromatics using NBS in WEPA. SN Applied Sciences, 2019, 1, 1.	2.9	13
17	First sonochemical, simple and solvent-free synthesis of chiral <i>tert</i> -butanesulfinimines using silica supported <i>p</i> -toluenesulfonic acid. Synthetic Communications, 2019, 49, 56-64.	2.1	7
18	WEPA: a bio-derived medium for added base, ¨∈-acid and ligand free Ullmann coupling of aryl halides using Pd(OAc) ₂ . Chemical Communications, 2018, 54, 12333-12336.	4.1	52

#	Article	IF	CITATIONS
19	HClO ₄ â <sio<sub>2â€Catalyzed Mechanochemical Protocol: An Effective, Economical and Ecoâ€friendly Preparation of <i>N</i>â€(<i>tert</i>â€butylsulfinyl)imines. ChemistrySelect, 2018, 3, 11236-11240.</sio<sub>	1.5	9