Irina A Buyanova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1031747/publications.pdf

Version: 2024-02-01

349 papers 6,084 citations

35 h-index 64 g-index

353 all docs

353 docs citations

times ranked

353

5162 citing authors

#	Article	IF	CITATIONS
1	Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nature Materials, 2018, 17, 703-709.	13.3	701
2	Mechanism for low-temperature photoluminescence in GaNAs/GaAs structures grown by molecular-beam epitaxy. Applied Physics Letters, 1999, 75, 501-503.	1.5	252
3	Direct determination of electron effective mass in GaNAs/GaAs quantum wells. Applied Physics Letters, 2000, 77, 1843.	1.5	172
4	Electronic Properties of Ga(In)NAs Alloys. MRS Internet Journal of Nitride Semiconductor Research, 2001, 6, 1.	1.0	169
5	ZnO Doped With Transition Metal lons. IEEE Transactions on Electron Devices, 2007, 54, 1040-1048.	1.6	137
6	Wide bandgap GaN-based semiconductors for spintronics. Journal of Physics Condensed Matter, 2004, 16, R209-R245.	0.7	117
7	Oxygen and zinc vacancies in as-grown ZnO single crystals. Journal Physics D: Applied Physics, 2009, 42, 175411.	1.3	117
8	Mechanism for rapid thermal annealing improvements in undoped GaNxAs1â^'x/GaAs structures grown by molecular beam epitaxy. Applied Physics Letters, 2000, 77, 2325-2327.	1.5	95
9	Influence of conduction-band nonparabolicity on electron confinement and effective mass inGaNxAs1â^xâ^•GaAsquantum wells. Physical Review B, 2004, 69, .	1.1	94
10	Room-temperature defect-engineered spin filter based on a non-magnetic semiconductor. Nature Materials, 2009, 8, 198-202.	13.3	94
11	Ferromagnetism in Transition-Metal Doped ZnO. Journal of Electronic Materials, 2007, 36, 462-471.	1.0	90
12	Time-resolved studies of photoluminescence in GaNxP1â^'x alloys: Evidence for indirect-direct band gap crossover. Applied Physics Letters, 2002, 81, 52-54.	1.5	83
13	Band gap properties of Zn1â^'xCdxO alloys grown by molecular-beam epitaxy. Applied Physics Letters, 2006, 89, 151909.	1.5	71
14	Formation of nonradiative defects in molecular beam epitaxial GaNxAs1â^x studied by optically detected magnetic resonance. Applied Physics Letters, 2001, 79, 3089-3091.	1.5	63
15	Radiative recombination mechanism in GaNxP1â^'x alloys. Applied Physics Letters, 2002, 80, 1740-1742.	1.5	62
16	Intrinsic optical properties of GaN epilayers grown on SiC substrates: Effect of the builtâ€in strain. Applied Physics Letters, 1996, 69, 1255-1257.	1.5	61
17	Photoluminescence of GaN: Effect of electron irradiation. Applied Physics Letters, 1998, 73, 2968-2970.	1.5	60
18	Effect of growth temperature on photoluminescence of GaNAs/GaAs quantum well structures. Applied Physics Letters, 1999, 75, 3781-3783.	1.5	59

#	Article	lF	CITATIONS
19	Type I band alignment in theGaNxAs1â^'x/GaAsquantum wells. Physical Review B, 2000, 63, .	1.1	57
20	Dominant recombination centers in Ga(In)NAs alloys: Ga interstitials. Applied Physics Letters, 2009, 95, .	1.5	57
21	Signature of an intrinsic point defect in GaNx As 1 â ^ 'x. Physical Review B, 2001, 63, .	1.1	56
22	Nearâ€Infrared Lightâ€Responsive Cuâ€Doped Cs ₂ AgBiBr ₆ . Advanced Functional Materials, 2020, 30, 2005521.	7.8	56
23	Magnetizing lead-free halide double perovskites. Science Advances, 2020, 6, .	4.7	56
24	Hydrogen-induced improvements in optical quality of GaNAs alloys. Applied Physics Letters, 2003, 82, 3662-3664.	1.5	55
25	Nitrogen passivation induced by atomic hydrogen: $\hat{a} \in f$ TheGaP1 \hat{a} 'yNycase. Physical Review B, 2003, 67, .	1.1	53
26	Zinc-Vacancy–Donor Complex: A Crucial Compensating Acceptor in ZnO. Physical Review Applied, 2014, 2, .	1.5	51
27	Analysis of band anticrossing inGaNxP1â^'xalloys. Physical Review B, 2004, 70, .	1.1	50
28	Free Excitons in GaN. MRS Internet Journal of Nitride Semiconductor Research, 1996, 1, 1.	1.0	45
29	Dilute Nitride Nanowire Lasers Based on a GaAs/GaNAs Core/Shell Structure. Nano Letters, 2017, 17, 1775-1781.	4.5	45
30	Recombination processes in N-containing III–V ternary alloys. Solid-State Electronics, 2003, 47, 467-475.	0.8	44
31	Magneto-optical and light-emission properties of IIIÂAsÂN semiconductors. Semiconductor Science and Technology, 2002, 17, 815-822.	1.0	42
32	Er/O and Er/F doping during molecular beam epitaxial growth of Si layers for efficient 1.54 μm light emission. Applied Physics Letters, 1997, 70, 3383-3385.	1.5	41
33	Properties of Ga-interstitial defects inAlxGa1â^'xNyP1â^'y. Physical Review B, 2005, 71, .	1.1	37
34	On the origin of spin loss in GaMnN/InGaN light-emitting diodes. Applied Physics Letters, 2004, 84, 2599-2601.	1.5	36
35	Turning ZnO into an Efficient Energy Upconversion Material by Defect Engineering. Advanced Functional Materials, 2014, 24, 3760-3764.	7.8	36
36	Growth and characterization of dilute nitride GaNxP1â^'x nanowires and GaNxP1â^'x/GaNyP1â^'y core/shell nanowires on Si (111) by gas source molecular beam epitaxy. Applied Physics Letters, 2014, 105, .	1.5	36

3

#	Article	IF	CITATIONS
37	Room-temperature InP/InAsP Quantum Discs-in-Nanowire Infrared Photodetectors. Nano Letters, 2017, 17, 3356-3362.	4.5	36
38	Spin injection and helicity control of surface spin photocurrent in a three dimensional topological insulator. Nature Communications, 2017, 8, 15401.	5 . 8	36
39	Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires. Nanotechnology, 2012, 23, 425201.	1.3	35
40	Suppression of non-radiative surface recombination by N incorporation in GaAs/GaNAs core/shell nanowires. Scientific Reports, 2015, 5, 11653.	1.6	35
41	Temperature dependence of the GaNxP1â°'x band gap and effect of band crossover. Applied Physics Letters, 2002, 81, 3984-3986.	1.5	34
42	Defects in N, O and N, Zn implanted ZnO bulk crystals. Journal of Applied Physics, 2013, 113, .	1.1	34
43	Exciton spin relaxation in diluted magnetic semiconductorZn1â^'xMnxSe/CdSesuperlattices: Effect of spin splitting and role of longitudinal optical phonons. Physical Review B, 2003, 67, .	1.1	33
44	Efficient room-temperature nuclear spin hyperpolarization of a defect atom in a semiconductor. Nature Communications, 2013, 4, 1751.	5 . 8	33
45	The excitonic bandgap of GaN: Dependence on substrate. Solid-State Electronics, 1997, 41, 239-241.	0.8	31
46	Electron spin filtering by thin GaNAs/GaAs multiquantum wells. Applied Physics Letters, 2010, 96, .	1.5	31
47	Defects in dilute nitrides. Journal of Physics Condensed Matter, 2004, 16, S3027-S3035.	0.7	30
48	Long lifetime of free excitons in ZnO tetrapod structures. Applied Physics Letters, 2010, 96, .	1.5	30
49	Mechanism for radiative recombination and defect properties of GaP/GaNP core/shell nanowires. Applied Physics Letters, 2012, 101, 163106.	1.5	30
50	Mechanism for thermal quenching of luminescence in SiGe/Si structures grown by molecular beam epitaxy: Role of nonradiative defects. Applied Physics Letters, 1997, 71, 3676-3678.	1.5	29
51	Tunable laser spectroscopy of spin injection in ZnMnSe/ZnCdSe quantum structures. Applied Physics Letters, 2002, 81, 2196-2198.	1.5	29
52	Enhancement of polymer endurance to UV light by incorporation of semiconductor nanoparticles. Nanoscale Research Letters, 2015, 10, 81.	3.1	29
53	Optical characterization of III-nitrides. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 93, 112-122.	1.7	28
54	Near-Infrared Lasing at 1 \hat{l} 4m from a Dilute-Nitride-Based Multishell Nanowire. Nano Letters, 2019, 19, 885-890.	4. 5	28

#	Article	IF	Citations
55	Vibronic coherence contributes to photocurrent generation in organic semiconductor heterojunction diodes. Nature Communications, 2020, 11, 617.	5.8	28
56	Structural properties of a GaNxP1â^'x alloy: Raman studies. Applied Physics Letters, 2001, 78, 3959-3961.	1.5	27
57	Origin of radiative recombination and manifestations of localization effects in GaAs/GaNAs core/shell nanowires. Applied Physics Letters, 2014, 105, .	1.5	27
58	Room-temperature electron spin polarization exceeding 90% in an opto-spintronic semiconductor nanostructure via remote spin filtering. Nature Photonics, 2021, 15, 475-482.	15.6	27
59	Identification of a dominant mechanism for optical spin injection from a diluted magnetic semiconductor: Spin-conserving energy transfer via localized excitations. Physical Review B, 2005, 72, .	1.1	26
60	Efficient upconversion of photoluminescence via two-photon absorption in bulk and nanorod ZnO. Applied Physics B: Lasers and Optics, 2012, 108, 919-924.	1.1	26
61	Energy Upconversion in GaP/GaNP Core/Shell Nanowires for Enhanced Nearâ€Infrared Light Harvesting. Small, 2014, 10, 4403-4408.	5.2	26
62	Experimental evidence for N-induced strong coupling of host conduction band states inGaNxP1â ⁻² x:â€∫Insight into the dominant mechanism for giant band-gap bowing. Physical Review B, 2004, 69, .	1.1	25
63	Point defects in dilute nitride III-N–As and III-N–P. Physica B: Condensed Matter, 2006, 376-377, 545-551.	1.3	25
64	Effects of surface finish on the initial oxidation of HVAF-sprayed NiCoCrAlY coatings. Surface and Coatings Technology, 2019, 364, 43-56.	2.2	25
65	Direct experimental evidence for unusual effects of hydrogen on the electronic and vibrational properties ofGaNxP1â^xalloys: A proof for a general property of dilute nitrides. Physical Review B, 2004, 70, .	1.1	24
66	Charge Generation via Relaxed Charge-Transfer States in Organic Photovoltaics by an Energy-Disorder-Driven Entropy Gain. Journal of Physical Chemistry C, 2018, 122, 12640-12646.	1.5	24
67	Efficient spin depolarization in ZnCdSe spin detector: an important factor limiting optical spin injection efficiency in ZnMnSeâ [•] ZnCdSe spin light-emitting structures. Applied Physics Letters, 2004, 85, 5260-5262.	1.5	23
68	Mechanism for radiative recombination in ZnCdO alloys. Applied Physics Letters, 2007, 90, 261907.	1.5	23
69	Roomâ€Temperature Electron Spin Amplifier Based on Ga(In)NAs Alloys. Advanced Materials, 2013, 25, 738-742.	11.1	23
70	Dynamics of exciton-spin injection, transfer, and relaxation in self-assembled quantum dots of CdSe coupled with a diluted magnetic semiconductor layer of Zn0.80Mn0.20Se. Physical Review B, 2007, 75, .	1.1	22
71	Effects of hydrogen on the optical properties of ZnCdOâ^•ZnO quantum wells grown by molecular beam epitaxy. Applied Physics Letters, 2008, 92, 261912.	1.5	22
72	Origin of Strong Photoluminescence Polarization in GaNP Nanowires. Nano Letters, 2014, 14, 5264-5269.	4.5	22

#	Article	IF	Citations
73	Strongly polarized quantum-dot-like light emitters embedded in GaAs/GaNAs core/shell nanowires. Nanoscale, 2016, 8, 15939-15947.	2.8	22
74	Control of spin functionality in ZnMnSe-based structures: Spin switching versus spin alignment. Applied Physics Letters, 2003, 82, 1700-1702.	1.5	21
75	Paramagnetic centers in detonation nanodiamonds studied by CW and pulse EPR. Chemical Physics Letters, 2010, 493, 319-322.	1.2	21
76	Efficient nitrogen incorporation in ZnO nanowires. Scientific Reports, 2015, 5, 13406.	1.6	21
77	Intrinsic Doping: A New Approach forn-Type Modulation Doping in InP-Based Heterostructures. Physical Review Letters, 1996, 77, 2734-2737.	2.9	20
78	As-Grown 4H-SiC Epilayers with Magnetic Properties. Materials Science Forum, 2004, 457-460, 747-750.	0.3	20
79	Efficient spin relaxation in InGaNâ^•GaN and InGaNâ^•GaMnN quantum wells: An obstacle to spin detection. Applied Physics Letters, 2005, 87, 192107.	1.5	20
80	Raman spectroscopy of GaP/GaNP core/shell nanowires. Applied Physics Letters, 2014, 105, 193102.	1.5	20
81	Interfacial bonding in a CdS/PVA nanocomposite: A Raman scattering study. Journal of Colloid and Interface Science, 2015, 452, 33-37.	5.0	20
82	Optimizing GaNP Coaxial Nanowires for Efficient Light Emission by Controlling Formation of Surface and Interfacial Defects. Nano Letters, 2015, 15, 242-247.	4.5	20
83	Strong room-temperature optical and spin polarization in InAs/GaAs quantum dot structures. Applied Physics Letters, 2011, 98, .	1.5	19
84	Effects of Polytypism on Optical Properties and Band Structure of Individual Ga(N)P Nanowires from Correlative Spatially Resolved Structural and Optical Studies. Nano Letters, 2015, 15, 4052-4058.	4.5	19
85	Photoluminescence of the two-dimensional hole gas inp-type Î-doped Si layers. Physical Review B, 1996, 53, 9587-9590.	1.1	18
86	Identification of Ga-interstitial defects in GaNyPlâ^'yand Alx Galâ^'x NyPlâ^'y. Physical Review B, 2004, 70, .	1.1	18
87	Dominant factors limiting efficiency of optical spin detection in ZnO-based materials. Applied Physics Letters, 2008, 92, 092103.	1.5	18
88	Effects of stoichiometry on defect formation in ZnO epilayers grown by molecular-beam epitaxy: An optically detected magnetic resonance study. Journal of Applied Physics, 2008, 103, 023712.	1.1	18
89	Catalytic conversion of C2-C3 alcohols on detonation nanodiamond and its modifications. Russian Journal of Physical Chemistry A, 2012, 86, 26-31.	0.1	18
90	Effects of Ni-coating on ZnO nanowires: A Raman scattering study. Journal of Applied Physics, 2013, 113, 214302.	1.1	18

#	Article	IF	Citations
91	Influence of ion bombardment on Si and SiGe films during molecular beam epitaxy growth. Applied Physics Letters, 1996, 68, 238-240.	1.5	17
92	Effects of defect scattering on the photoluminescence of exciton-polaritons in n-GaN. Solid State Communications, 1998, 105, 497-501.	0.9	17
93	Identification of an isolated arsenic antisite defect in GaAsBi. Applied Physics Letters, 2014, 104, 052110.	1.5	17
94	Identification of Grown-In Efficient Nonradiative Recombination Centers in Molecular Beam Epitaxial Silicon. Physical Review Letters, 1996, 77, 4214-4217.	2.9	16
95	Optical study of spin injection dynamics in InGaNâ̂GaN quantum wells with GaMnN injection layers. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 2668.	1.6	16
96	Efficiency of optical spin injection and spin loss from a diluted magnetic semiconductor ZnMnSe to CdSe nonmagnetic quantum dots. Physical Review B, 2008, 77, .	1.1	16
97	Dynamics of donor bound excitons in ZnO. Applied Physics Letters, 2013, 102, .	1.5	16
98	Room-temperature polarized spin-photon interface based on a semiconductor nanodisk-in-nanopillar structure driven by few defects. Nature Communications, 2018, 9, 3575.	5.8	16
99	GaAs/GaNAs core-multishell nanowires with nitrogen composition exceeding 2%. Applied Physics Letters, 2018, 113, .	1.5	16
100	Measurements of Strain and Bandgap of Coherently Epitaxially Grown Wurtzite InAsP–InP Core–Shell Nanowires. Nano Letters, 2019, 19, 2674-2681.	4.5	16
101	Thermal-annealing effects on energy level alignment at organic heterojunctions and corresponding voltage losses in all-polymer solar cells. Nano Energy, 2020, 72, 104677.	8.2	16
102	Similarity between the 0.88-eV photoluminescence in GaN and the electron-capture emission of the OPdonor in GaP. Physical Review B, 1998, 58, R13351-R13354.	1.1	15
103	Optical properties of GaNAs/GaAs structures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 82, 143-147.	1.7	15
104	Modeling of band gap properties of GalnNP alloys lattice matched to GaAs. Applied Physics Letters, 2006, 88, 031907.	1.5	15
105	Optical characterization of ZnMnO-based dilute magnetic semiconductor structures. Journal of Vacuum Science & Technology B, 2006, 24, 259.	1.3	15
106	Defect properties of ZnO nanowires revealed from an optically detected magnetic resonance study. Nanotechnology, 2013, 24, 015701.	1.3	15
107	Magneto-optical properties of Cr3+ in \hat{I}^2 -Ga2O3. Applied Physics Letters, 2021, 119, .	1.5	15
108	Exciton properties inp-type GaAs/AlxGa1â^xAs quantum wells in the high doping regime. Physical Review B, 1996, 54, 16989-16993.	1.1	14

#	Article	IF	Citations
109	Photoluminescence characterization of GaNAs/GaAs structures grown by molecular beam epitaxy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 75, 166-169.	1.7	14
110	Formation of Ga interstitials in (Al,In)yGa1â^'yNxP1â^'x alloys and their role in carrier recombination. Applied Physics Letters, 2004, 85, 2827-2829.	1.5	14
111	Formation of grown-in defects in molecular beam epitaxial Ga(In)NP: Effects of growth conditions and postgrowth treatments. Journal of Applied Physics, 2008, 103, 063519.	1.1	14
112	Electron spin control in dilute nitride semiconductors. Journal of Physics Condensed Matter, 2009, 21, 174211.	0.7	14
113	Photoluminescence of exciton-polaritons in GaN. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 50, 130-133.	1.7	13
114	Effect of momentum relaxation on exciton spin dynamics in diluted magnetic semiconductorZnMnSeâ·CdSesuperlattices. Physical Review B, 2005, 71, .	1.1	13
115	Photoluminescence upconversion in GalnNPâ [•] GaAs heterostructures grown by gas source molecular beam epitaxy. Journal of Applied Physics, 2006, 99, 073515.	1.1	13
116	Slowdown of light due to exciton-polariton propagation in ZnO. Physical Review B, 2011, 83, .	1.1	13
117	Fabry–Perot Microcavity Modes in Single GaP/GaNP Core/Shell Nanowires. Small, 2015, 11, 6331-6337.	5.2	13
118	Dilute nitrides-based nanowiresâ€"a promising platform for nanoscale photonics and energy technology. Nanotechnology, 2019, 30, 292002.	1.3	13
119	Competition between triplet pair formation and excimer-like recombination controls singlet fission yield. Cell Reports Physical Science, 2021, 2, 100339.	2.8	13
120	Spin injection in lateral InAs quantum dot structures by optical orientation spectroscopy. Nanotechnology, 2009, 20, 375401.	1.3	12
121	On the origin of suppression of free exciton no-phonon emission in ZnO tetrapods. Applied Physics Letters, 2010, 96, .	1.5	12
122	Effect of hyperfine-induced spin mixing on the defect-enabled spin blockade and spin filtering in GaNAs. Physical Review B, 2013 , 87 , .	1.1	12
123	Defect formation in GaAs/GaNxAs1-x core/shell nanowires. Applied Physics Letters, 2016, 109, .	1.5	12
124	Effects of Nitrogen Incorporation on Structural and Optical Properties of GaNAsP Nanowires. Journal of Physical Chemistry C, 2017, 121, 7047-7055.	1.5	12
125	Strong effects of carrier concentration on the Fermi-edge singularity in modulation-doped InP/InxGa1â^'xAs heterostructures. Physical Review B, 1997, 55, 7052-7058.	1.1	11
126	Ga-related defect in as-grown Zn-doped GaN: An optically detected magnetic resonance study. Physical Review B, 2000, 62, R10607-R10609.	1.1	11

#	Article	IF	Citations
127	Optically detected magnetic resonance studies of point defects in Ga(Al)NAs. Physical Review B, 2006, 73, .	1.1	11
128	Migration and luminescence enhancement effects of deuterium in ZnOâ^•ZnCdO quantum wells. Applied Physics Letters, 2008, 92, .	1.5	11
129	Evidence for a phosphorus-related interfacial defect complex at a GaP/GaNP heterojunction. Physical Review B, 2010, 81, .	1.1	11
130	Effects of Ultraviolet Light on Optical Properties of Colloidal CdS Nanoparticles Embedded in Polyvinyl Alcohol (PVA) Matrix. Advanced Science, Engineering and Medicine, 2012, 4, 394-400.	0.3	11
131	Role of the host polymer matrix in light emission processes in nano-CdS/poly vinyl alcohol composite. Thin Solid Films, 2013, 543, 11-15.	0.8	11
132	Anomalous spectral dependence of optical polarization and its impact on spin detection in InGaAs/GaAs quantum dots. Applied Physics Letters, 2014, 105, 132106.	1.5	11
133	Growth of isotopically enriched ZnO nanorods of excellent optical quality. Journal of Crystal Growth, 2015, 429, 6-12.	0.7	11
134	Electron paramagnetic resonance signatures of Co2 + and Cu2 + in <i>\hat{l}^2</i> -Ga2O3. Applied Physics Letters, 2019, 115, .	1.5	11
135	Effect of Crystal Symmetry on the Spin States of Fe ³⁺ and Vibration Modes in Lead-free Double-Perovskite Cs ₂ AgBi(Fe)Br ₆ . Journal of Physical Chemistry Letters, 2020, 11, 4873-4878.	2.1	11
136	Thermally activated intersubband and hopping transport in center-dopedp-type GaAs/AlxGa1â^'xAs quantum wells. Physical Review B, 1996, 53, 1357-1361.	1.1	10
137	Optical characterization of wide bandgap semiconductors. Thin Solid Films, 2000, 364, 98-106.	0.8	10
138	Magneto-optical studies of the 0.88-eV photoluminescence emission in electron-irradiated GaN. Physical Review B, 2000, 62, 16572-16577.	1.1	10
139	Optical and electrical characterization of (Ga,Mn)N/InGaN multiquantum well light-emitting diodes. Journal of Electronic Materials, 2004, 33, 467-471.	1.0	10
140	Recharging behavior of nitrogen-centers in ZnO. Journal of Applied Physics, 2014, 116, .	1.1	10
141	Effects of Strong Band-Tail States on Exciton Recombination Dynamics in Dilute Nitride GaP/GaNP Core/Shell Nanowires. Journal of Physical Chemistry C, 2018, 122, 19212-19218.	1.5	10
142	Coexistence of two deep donor states,DXâ^'andDX0, of the Sn donor inGalâ^'xAlxAs. Physical Review B, 1992, 45, 11667-11671.	1.1	9
143	Ultrasound regeneration of EL2 centres in GaAs. Semiconductor Science and Technology, 1994, 9, 158-162.	1.0	9
144	Some critical issues on growth of high quality Si and SiGe films using a solid-source molecular beam epitaxy system. Journal of Crystal Growth, 1995, 157, 242-247.	0.7	9

#	Article	IF	Citations
145	Properties of deep photoluminescence bands in SiGe/Si quantum structures grown by molecular beam epitaxy. Applied Physics Letters, 1995, 67, 1642-1644.	1.5	9
146	Effect of hydrogen passivation on Beâ€doped AlGaAs/GaAs quantum wells. Applied Physics Letters, 1996, 68, 1365-1367.	1.5	9
147	Optical detection of quantum oscillations in InP/InGaAs quantum structures. Applied Physics Letters, 1996, 69, 809-811.	1.5	9
148	Mechanism for Light Emission in GaNAs/GaAs Structures Grown by Molecular Beam Epitaxy. Physica Status Solidi (B): Basic Research, 1999, 216, 125-129.	0.7	9
149	Evaluation of optical quality and defect properties of GaNxP1â^'x alloys lattice matched to Si. Applied Physics Letters, 2004, 85, 6347-6349.	1.5	9
150	Effects of rapid thermal annealing on optical properties of GaNxP1â^'xalloys grown by solid source molecular beam epitaxy. Semiconductor Science and Technology, 2005, 20, 353-356.	1.0	9
151	Density-dependent dynamics of exciton magnetic polarons inZnMnSeâ^•ZnSSetype-II quantum wells. Physical Review B, 2006, 73, .	1.1	9
152	Hydrogen passivation of nitrogen in GaNAs and GaNP alloys: How many H atoms are required for each N atom?. Applied Physics Letters, 2007, 90, 021920.	1.5	9
153	Effects of Ga doping on optical and structural properties of ZnO epilayers. Superlattices and Microstructures, 2009, 45, 413-420.	1.4	9
154	Donor bound excitons involving a hole from the B valence band in ZnO: Time resolved and magneto-photoluminescence studies. Applied Physics Letters, 2011, 99, 091909.	1.5	9
155	Effect of postgrowth hydrogen treatment on defects in GaNP. Applied Physics Letters, 2011, 98, 141920.	1.5	9
156	Efficient room-temperature spin detector based on GaNAs. Journal of Applied Physics, 2012, 111, 07C303.	1.1	9
157	Optically detected magnetic resonance studies of point defects in quaternary GaNAsP epilayers grown by vapor phase epitaxy. Applied Physics Letters, 2013, 102, 021910.	1.5	9
158	Luminescent and Optically Detected Magnetic Resonance Studies of CdS/PVA Nanocomposite. Nanoscale Research Letters, 2017, 12, 130.	3.1	9
159	Effects of N implantation on defect formation in ZnO nanowires. Thin Solid Films, 2019, 687, 137449.	0.8	9
160	Molecular beam epitaxial growth of dilute nitride GaNAs and GaInNAs nanowires. Nanotechnology, 2019, 30, 244002.	1.3	9
161	Anomalously Strong Secondâ€Harmonic Generation in GaAs Nanowires via Crystalâ€Structure Engineering. Advanced Functional Materials, 2021, 31, 2104671.	7.8	9
162	Symmetry properties of Er3+related centers in In1â^'xGaxP with low alloy compositions. Applied Physics Letters, 1992, 61, 2461-2463.	1.5	8

#	Article	IF	CITATIONS
163	Effect of ion bombardment on deep photoluminescence bands inp-type boron-modulation-doped Si layers grown by molecular-beam epitaxy. Physical Review B, 1995, 52, 12006-12012.	1.1	8
164	Photoluminescence of defects induced in silicon by SF6/O2reactiveâ€ion etching. Journal of Applied Physics, 1995, 78, 3348-3352.	1.1	8
165	Nonradiative defects in Si and SiGe/Si heterostructures grown by molecular beam epitaxy. Applied Physics Letters, 1996, 68, 1256-1258.	1.5	8
166	Postgrowth hydrogen treatments of nonradiative defects in low-temperature molecular beam epitaxial Si. Applied Physics Letters, 1997, 70, 369-371.	1.5	8
167	Temperature behavior of the GaNP band gap energy. Solid-State Electronics, 2003, 47, 493-496.	0.8	8
168	Band alignment in GalnNPâ^•GaAs heterostructures grown by gas-source molecular-beam epitaxy. Applied Physics Letters, 2005, 86, 261904.	1.5	8
169	Radiative recombination of GaInNP alloys lattice matched to GaAs. Applied Physics Letters, 2006, 88, 011919.	1.5	8
170	Understanding and optimizing spin injection in self-assembled InAs/GaAs quantum-dot molecular structures. Nano Research, 2016, 9, 602-611.	5.8	8
171	Properties of Er-related emission in in situ doped Si epilayers grown by molecular beam epitaxy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 1732.	1.6	7
172	Nature and Formation of Non-Radiative Defects in GaNAs And InGaAsN. Materials Research Society Symposia Proceedings, 2001, 692, 1.	0.1	7
173	Effect of nitrogen ion bombardment on defect formation and luminescence efficiency of GaNP epilayers grown by molecular-beam epitaxy. Applied Physics Letters, 2006, 88, 101904.	1.5	7
174	Spin Dynamics in ZnO-Based Materials. Journal of Superconductivity and Novel Magnetism, 2010, 23, 161-165.	0.8	7
175	Room-temperature spin injection and spin loss across a GaNAs/GaAs interface. Applied Physics Letters, 2011, 98, 012112.	1.5	7
176	Room temperature spin filtering effect in GaNAs: Role of hydrogen. Applied Physics Letters, 2011, 99, 152109.	1.5	7
177	Optical properties of GaP/GaNP core/shell nanowires: a temperature-dependent study. Nanoscale Research Letters, 2013, 8, 239.	3.1	7
178	Exciton Fine-Structure Splitting in Self-Assembled Lateral InAs/GaAs Quantum-Dot Molecular Structures. ACS Nano, 2015, 9, 5741-5749.	7. 3	7
179	Self-catalyzed core-shell GaAs/GaNAs nanowires grown on patterned Si (111) by gas-source molecular beam epitaxy. Applied Physics Letters, 2017, 111 , .	1.5	7
180	Effect of exciton transfer on recombination dynamics in vertically nonuniform GaAsSb epilayers. Applied Physics Letters, 2019, 114, .	1.5	7

#	Article	IF	CITATIONS
181	Band Structure of Wurtzite GaBiAs Nanowires. Nano Letters, 2019, 19, 6454-6460.	4.5	7
182	Symmetry of metastable EL2 luminescence centres in semi-insulating GaAs single crystals. Semiconductor Science and Technology, 1989, 4, 797-802.	1.0	6
183	Properties of GaAsN/GaAs quantum wells studied by optical detection of cyclotron resonance. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 82, 218-220.	1.7	6
184	On the spin injection in ZnMnSe/ZnCdSe heterostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 538-541.	1.3	6
185	Magnetic resonance signatures of grown-in defects in GalnNP alloys grown on a GaAs substrate. Applied Physics Letters, 2005, 86, 222110.	1.5	6
186	Transition Metal Doped ZnO for Spintronics. Materials Research Society Symposia Proceedings, 2007, 999, 1.	0.1	6
187	Metamorphic InGaAs quantum wells for light emission at 1.3–1.6ÂÎ⅓m. Thin Solid Films, 2007, 515, 4348-4351	.0.8	6
188	Effects of P implantation and post-implantation annealing on defect formation in ZnO. Journal of Applied Physics, 2012, 111, 043520.	1.1	6
189	Cathodoluminescence characterization of ZnO tetrapod structures. Thin Solid Films, 2013, 543, 114-117.	0.8	6
190	Size dependence of electron spin dephasing in InGaAs quantum dots. Applied Physics Letters, 2015, 106, 093109.	1.5	6
191	Thermal stability of the prominent compensating (AlZn–VZn) center in ZnO. Journal of Applied Physics, 2016, 119, 105702.	1.1	6
192	N -induced Quantum Dots in GaAs/Ga(N,As) Core/Shell Nanowires: Symmetry, Strain, and Electronic Structure. Physical Review Applied, 2018, 10, .	1.5	6
193	Increasing N content in GaNAsP nanowires suppresses the impact of polytypism on luminescence. Nanotechnology, 2019, 30, 405703.	1.3	6
194	Self-assembled nanodisks in coaxial GaAs/GaAsBi/GaAs core–multishell nanowires. Nanoscale, 2020, 12, 20849-20858.	2.8	6
195	Effects of thermal annealing on localization and strain in core/multishell GaAs/GaNAs/GaAs nanowires. Scientific Reports, 2020, 10, 8216.	1.6	6
196	An Efficient Deep-Subwavelength Second Harmonic Nanoantenna Based on Surface Plasmon-Coupled Dilute Nitride GaNP Nanowires. Nano Letters, 2021, 21, 3426-3434.	4.5	6
197	Optical properties of electron-irradiated GaN. MRS Internet Journal of Nitride Semiconductor Research, 1998, 3, 1.	1.0	6
198	Influence of subthreshold ultrasound treatment on the recombination properties of dislocations in GexSi1-x-Si heterostructures. Semiconductor Science and Technology, 1994, 9, 2042-2046.	1.0	5

#	Article	IF	Citations
199	Excitation mechanism of porous silicon luminescence: the role of sensitizers. Thin Solid Films, 1995, 255, 185-187.	0.8	5
200	Electronic Structure and Temperature Dependence of Excitons in GaN. Materials Research Society Symposia Proceedings, 1996, 423, 675.	0.1	5
201	Effect of Electron Irradiation on Optical Properties of Gallium Nitride. Physica Scripta, 1999, T79, 72.	1.2	5
202	Photoluminescence characterization of defects created in electron-irradiated silicon at elevated temperatures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 72, 146-149.	1.7	5
203	ZnMnSe/ZnSSe Type-II semimagnetic superlattices: Growth and magnetoluminescence properties. Semiconductors, 2002, 36, 1288-1293.	0.2	5
204	Defects in dilute nitrides: significance and experimental signatures. IEE Proceedings: Optoelectronics, 2004, 151, 379-384.	0.8	5
205	Zeeman splitting and dynamics of an isoelectronic bound exciton near the band edge of ZnO. Physical Review B, 2012, 86, .	1.1	5
206	Defect properties of ZnO nanowires. , 2014, , .		5
207	Limiting factor of defect-engineered spin-filtering effect at room temperature. Physical Review B, 2014, 89, .	1.1	5
208	Core–shell carrier and exciton transfer in GaAs/GaNAs coaxial nanowires. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, 04J104.	0.6	5
209	Identification of a Nitrogen-related acceptor in ZnO nanowires. Nanoscale, 2019, 11, 10921-10926.	2.8	5
210	Effects of growth temperature and thermal annealing on optical quality of GaNAs nanowires emitting in the near-infrared spectral range. Nanotechnology, 2020, 31, 065702.	1.3	5
211	Effects of Bi incorporation on recombination processes in wurtzite GaBiAs nanowires. Nanotechnology, 2020, 31, 225706.	1.3	5
212	Symmetry of optically active Ybâ€related centers in InP and In1â^'xGaxP (xâ‰ 6 .13). Journal of Applied Physics, 1994, 76, 1180-1183.	1,1	4
213	Influence of growth conditions on the formation of deep photoluminescence bands in MBE-grown Si layers and SiGe/Si quantum structures. Applied Surface Science, 1996, 102, 293-297.	3.1	4
214	Fermi-edge singularity inp-type modulation-doped SiGe quantum wells. Physical Review B, 1996, 53, R1701-R1704.	1.1	4
215	Electronic structure and temperature dependence of excitons in GaN. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 43, 172-175.	1.7	4
216	Applications of defect engineering in InP-based structures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 75, 103-109.	1.7	4

#	Article	IF	Citations
217	Strain relaxation in GaNxP1â^'x alloy: effect on optical properties. Physica B: Condensed Matter, 2001, 308-310, 106-109.	1.3	4
218	Semimagnetic ZnMnSe/CdSe Fractional Monolayer Superlattice as an Injector of Spin-Polarized Carriers. Physica Status Solidi (B): Basic Research, 2002, 229, 765-768.	0.7	4
219	Origin of bandgap bowing in GaNP alloys. IEE Proceedings: Optoelectronics, 2004, 151, 389-392.	0.8	4
220	Editorial: Dilute nitride and related mismatched semiconductor alloys. IEE Proceedings: Optoelectronics, 2004, 151, 245-246.	0.8	4
221	Electrical and luminescent properties and the spectra of deep centers in GaMnN/InGaN light-emitting diodes. Journal of Electronic Materials, 2004, 33, 241-247.	1.0	4
222	Optical characterization studies of grown-in defects in ZnO epilayers grown by molecular beam epitaxy. Physica B: Condensed Matter, 2007, 401-402, 413-416.	1.3	4
223	Spin-Conserving Tunneling of Excitons in Diluted Magnetic Semiconductor Double Quantum Wells. Japanese Journal of Applied Physics, 2008, 47, 3533-3536.	0.8	4
224	Efficiency of spin injection in novel InAs quantum dot structures: exciton vs. free carrier injection. Journal of Physics: Conference Series, 2010, 245, 012044.	0.3	4
225	Effects of a longitudinal magnetic field on spin injection and detection in InAs/GaAs quantum dot structures. Journal of Physics Condensed Matter, 2012, 24, 145304.	0.7	4
226	Temperature dependence of dynamic nuclear polarization and its effect on electron spin relaxation and dephasing in InAs/GaAs quantum dots. Applied Physics Letters, 2012, 100, .	1.5	4
227	Effects of hydrogenation on non-radiative defects in GaNP and GaNAs alloys: An optically detected magnetic resonance study. Journal of Applied Physics, 2012, 111, 023501.	1.1	4
228	Antiferromagnetic interaction in coupled CdSe/ZnMnSe quantum dot structures. Applied Physics Letters, 2012, 101, 052405.	1.5	4
229	The Hanle effect and electron spin polarization in InAs/GaAs quantum dots up to room temperature. Nanotechnology, 2012, 23, 135705.	1.3	4
230	Structural properties of GaNAs nanowires probed by micro-Raman spectroscopy. Semiconductor Science and Technology, 2016, 31, 025002.	1.0	4
231	Photoelectrochemical response of GaN, InGaN, and GaNP nanowire ensembles. Journal of Applied Physics, 2018, 123, 175703.	1.1	4
232	Formation, electronic structure, and optical properties of self-assembled quantum-dot single-photon emitters in Ga(N,As,P) nanowires. Physical Review Materials, 2020, 4, .	0.9	4
233	Influence of Ultrasound Vibrations on the Stable-Metastable Transitions of EL2 Centers in GaAs. Materials Science Forum, 1994, 143-147, 1063-1068.	0.3	3
234	Photoluminescence characterization of SF6O2 plasma etching of silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 36, 100-103.	1.7	3

#	Article	IF	Citations
235	Exciton Spin Manipulation in ZnMnSe-Based Structures. Journal of Superconductivity and Novel Magnetism, 2003, 16, 399-402.	0.5	3
236	Hydrogen-related effects in diluted nitrides. Physica B: Condensed Matter, 2003, 340-342, 371-376.	1.3	3
237	Magneto-photoluminescence studies of diluted magnetic semiconductor type-II quantum wells ZnMnSe/ZnSSe. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 352-354.	1.3	3
238	Resonant suppression of exciton spin relaxation in Zn0.96Mn0.04Se/CdSe superlattices. Journal of Applied Physics, 2003, 93, 7352-7354.	1.1	3
239	Effects of rapid thermal annealing on optical quality of GaNP alloys. IEE Proceedings: Optoelectronics, 2004, 151, 335-337.	0.8	3
240	Exciton magnetic polarons in a type II ZnMnSe/ZnSSe superlattice. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 847-850.	0.8	3
241	Spin injection and spin loss in GaMnN/InGaN Light-Emitting Diodes. AIP Conference Proceedings, 2005, , .	0.3	3
242	Material properties of dilute nitrides: Ga(In)NAs and Ga(In)NP. Journal of Crystal Growth, 2006, 288, 7-11.	0.7	3
243	Optically detected cyclotron resonance studies of InxGalâ^'xNyAslâ^'yâ^•GaAs quantum wells sandwiched between type-II AlAsâ^•GaAs superlattices. Journal of Applied Physics, 2007, 101, 073705.	1.1	3
244	Effect of thermal annealing on defects in post-growth hydrogenated GaNP. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 561-563.	0.8	3
245	Effect of a Phonon Bottleneck on Exciton and Spin Generation in Self-Assembled <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mm< td=""><td>mn>1.5</td><td>ml:mn><mn< td=""></mn<></td></mm<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	mn>1.5	ml:mn> <mn< td=""></mn<>
246	Outermost AlGaO x native oxide as a protection layer for GaAs/AlGaAs core-multishell nanowires. Applied Physics Express, 2020, 13, 075003.	1.1	3
247	Molecular beam epitaxial growth of GaAs/GaNAsBi core–multishell nanowires. Applied Physics Express, 2021, 14, 115002.	1.1	3
248	Important Nonradiative Grown-In Defects in MBE-Grown Si and SiGe/Si Heterostructures. Materials Science Forum, 1995, 196-201, 473-478.	0.3	2
249	Defects In Low Temperature Mbe-Grown Si And Sige/Si Structures. Materials Research Society Symposia Proceedings, 1996, 442, 355.	0.1	2
250	Silicon-based structures for IR light emission. Physica Scripta, 1997, T69, 60-64.	1.2	2
251	Optical spectroscopy of MBE grown quantum wells at various acceptor doping levels. Thin Solid Films, 1997, 306, 244-247.	0.8	2
252	Incorporation and luminescence properties of Er2O3 and ErF3 doped Si layers grown by molecular beam epitaxy. Thin Solid Films, 1998, 321, 223-227.	0.8	2

#	Article	IF	CITATIONS
253	Electronic structure of the 0.88-eV luminescence center in electron-irradiated gallium nitride. Physical Review B, 1999, 60, 1746-1751.	1.1	2
254	Effect of high-temperature electron irradiation on the formation of radiative defects in silicon. Physica B: Condensed Matter, 1999, 273-274, 528-531.	1.3	2
255	Raman Studies of GaNP Alloy. Materials Research Society Symposia Proceedings, 2001, 693, 567.	0.1	2
256	Evidence for type I band alignment in GaNAs/GaAs quantum structures by optical spectroscopies. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 1074-1077.	1.3	2
257	Identification of Ga interstitials in GaAlNP. Physica B: Condensed Matter, 2003, 340-342, 466-469.	1.3	2
258	Formation of Ferromagnetic SiC:Mn Phases. Materials Science Forum, 2005, 483-485, 241-244.	0.3	2
259	Magneto-optical spectroscopy of spin injection and spin relaxation in ZnMnSe/ZnCdSe and GaMnN/InGaN spin light-emitting structures. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 159-173.	0.8	2
260	Sub-millisecond dynamic nuclear spin hyperpolarization in a semiconductor: A case study from Plnantisite in InP. Physical Review B, 2012, 86, .	1.1	2
261	Dual-wavelength excited photoluminescence spectroscopy of deep-level hole traps in Ga(In)NP. Journal of Applied Physics, 2015, 117, 015701.	1.1	2
262	Phosphorescence of CdS nanoparticles in polymer matrix as an indication of host-guest interaction. Materials Chemistry and Physics, 2016, 177, 379-383.	2.0	2
263	Study of the carrier transfer across the GaNP nanowire electrolyte interface by electron paramagnetic spin trapping. Applied Physics Letters, 2017, 110, 222101.	1.5	2
264	Scattering symmetry-breaking induced spin photocurrent from out-of-plane spin texture in a 3D topological insulator. Scientific Reports, 2020, 10, 10610.	1.6	2
265	Identifying a Generic and Detrimental Role of Fano Resonance in Spin Generation in Semiconductor Nanostructures. Physical Review Letters, 2021, 127, 127401.	2.9	2
266	Defects in Dilute Nitrides. Acta Physica Polonica A, 2005, 108, 571-579.	0.2	2
267	Role of the Substitutional Oxygen Donor in the Residual N-Type Conductivity in GaN. MRS Internet Journal of Nitride Semiconductor Research, 1999, 4, 514-519.	1.0	2
268	Gallium vacanciesâ€"common non-radiative defects in ternary GaAsP and quaternary GaNAsP nanowires. Nano Express, 2020, 1, 020022.	1.2	2
269	Efficient Nonradiative Recombination Centers in MBE-Grown Si and SiGe/Si Heterostructures. Materials Research Society Symposia Proceedings, 1995, 378, 135.	0.1	1
270	Radiative Recombination Processes in Boron Modulation-Doped SiGe Quantum Wells. Materials Research Society Symposia Proceedings, 1995, 378, 881.	0.1	1

#	Article	IF	Citations
271	Deep Photoluminescence Bands in Mbe Grown Si and Sige Materials Research Society Symposia Proceedings, 1995, 379, 405.	0.1	1
272	SF ₆ /0 ₂ and CF ₄ /0 ₂ Reactive-Ion-Etching-Induced Defects in Silicon Studied by Photoluminescence Spectroscopy: Role of Oxygen. Materials Science Forum, 1995, 196-201, 1807-1812.	0.3	1
273	Intense photoluminescence observed in modulation doped Si/SiGe quantum well structures. Applied Surface Science, 1996, 102, 298-302.	3.1	1
274	Intrinsic Modulation Doping in InP-Based Heterostructures. Materials Science Forum, 1997, 258-263, 805-812.	0.3	1
275	Room Temperature Photoluminescence Linewidth versus Material Quality of GaN. Materials Science Forum, 1998, 264-268, 1319-1322.	0.3	1
276	Thermal stability and doping efficiency of intrinsic modulation doping in InP-based structures. Applied Physics Letters, 1999, 75, 1733-1735.	1.5	1
277	Magnetooptical Investigations on Electron Irradiated GaN. Physica Scripta, 1999, T79, 53.	1.2	1
278	P–N defect in GaNP studied by optically detected magnetic resonance. Physica B: Condensed Matter, 2003, 340-342, 399-402.	1.3	1
279	InAs/Zn(Mn)Te/Cd(Mn)Se pseudomorphic quantum well structures for spintronic applications. Physica Status Solidi (B): Basic Research, 2004, 241, 704-707.	0.7	1
280	Optical Study of Spin Injection Dynamics in Double Quantum Wells of II-VI Diluted Magnetic Semiconductors. AIP Conference Proceedings, 2005, , .	0.3	1
281	Ferromagnetism in ZnO Doped with Transition Metal lons. , 2006, , 555-576.		1
282	Unusual effects of hydrogen on electronic and lattice properties of GaNP alloys. Physica B: Condensed Matter, 2006, 376-377, 568-570.	1.3	1
283	Transient photoluminescence spectroscopy of spin injection dynamics in double quantum wells of diluted magnetic semiconductors. Journal of Luminescence, 2006, 119-120, 418-422.	1.5	1
284	On a possible origin of the 2.87 eV optical transition in GaNP. Journal of Physics Condensed Matter, 2006, 18, 449-457.	0.7	1
285	Magneto-optical and tunable laser excitation spectroscopy of spin-injection and spin loss from Zn(Cd)MnSe diluted magnetic quantum well to CdSe non-magnetic quantum dots. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 147, 262-266.	1.7	1
286	Optical and electronic properties of GalnNP alloys $\hat{a}\in$ a new material system for lattice matching to GaAs. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 101-106.	0.8	1
287	Transfer dynamics of spin-polarized excitons into semiconductor quantum dots. Journal of Luminescence, 2009, 129, 1927-1930.	1.5	1
288	Magneto-optical properties and recombination dynamics of isoelectronic bound excitons in ZnO. , 2014, , .		1

#	Article	lF	CITATIONS
289	Spin dynamics of isoelectronic bound excitons in ZnO. Physical Review B, 2014, 89, .	1.1	1
290	Novel GaNAs and GaNP-based nanowires â€" Promising materials for optoelectronics and photonics. , 2016, , .		1
291	Novel GaP/GaNP core/shell nanowires for optoelectronics and photonics. , 2016, , .		1
292	Unintentional nitrogen incorporation in ZnO nanowires detected by electron paramagnetic resonance spectroscopy. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 572-575.	0.8	1
293	Photon upconversion promoted by defects in low-dimensional semiconductor nanostructures. , 2018, , 189-210.		1
294	Defects in one-dimensional nanowires. , 2018, , 63-85.		1
295	Efficient Auger Charge-Transfer Processes in ZnO. Physical Review Applied, 2018, 9, .	1.5	1
296	Oblique Nuclear Quadrupole Interaction in Self-Assembled Structures Based on Semiconductor Quantum Dots. Physical Review Applied, 2020, 14, .	1.5	1
297	Exciton generation and recombination dynamics of quantum dots embedded in GaNAsP nanowires. Physical Review B, 2021, 103, .	1.1	1
298	Characterization of Defects Created in Silicon Due to Etching in Low-Pressure Plasmas Containing Fluorine and Oxygen. Materials Research Society Symposia Proceedings, 1995, 396, 599.	0.1	0
299	Radiative recombination processes in p-type modulation-doped SiGe quantum wells and Si epilayers. Journal of Crystal Growth, 1995, 157, 362-366.	0.7	0
300	Defect Formation and Recombination Processes in p-Type Modulation-Doped Si Epilayers. Materials Science Forum, 1995, 196-201, 479-484.	0.3	0
301	Intrinsic N-Type Modulation Doping in Inp-Based Heterostructures. Materials Research Society Symposia Proceedings, 1996, 421, 21.	0.1	0
302	Optical properties of boron modulation-doped SiGe quantum wells and Si thin films. Solid-State Electronics, 1996, 40, 53-57.	0.8	0
303	Important defect aspects in optoelectronic applications of Si- and SiGe/Si-heterostructures. Applied Surface Science, 1996, 102, 279-282.	3.1	0
304	The Role of Non-Radiative Defects in Thermal Quenching of Luminescence in SiGe/Si Structures Grown by Molecular Beam Epitaxy. Materials Science Forum, 1997, 258-263, 139-144.	0.3	0
305	Mbe Growth And Characterization Of Er/O And Er/F Doped Si Light Emitting Structures. Materials Research Society Symposia Proceedings, 1997, 486, 133.	0.1	0
306	On the improvement in thermal quenching of luminescence in SiGe/Si structures grown by molecular beam epitaxy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 1928.	1.6	0

#	Article	IF	Citations
307	Influence Of Growth Conditions On The Thermal Quenching Of Photoluminescence From Sige/Si Quantum Structures. Materials Research Society Symposia Proceedings, 1998, 533, 295.	0.1	0
308	Relaxation Phenomena in GaN/ AlN/ 6H-SiC Heterostructures. Materials Research Society Symposia Proceedings, 1998, 537, 1.	0.1	0
309	Role of the Substitutional Oxygen Donor in the Residual N-Type Conductivity in GaN. Materials Research Society Symposia Proceedings, 1998, 537, 1.	0.1	0
310	Intrinsic modulation doping in InP-based structures: properties relevant to device applications. Journal of Crystal Growth, 1999, 201-202, 786-789.	0.7	0
311	Transport Properties of Intrinsically and Extrinsically Modulation Doped InP/InGaAs Heterostructures. Physica Scripta, 1999, T79, 103.	1.2	0
312	Optical and electronic properties of GaNAs/GaAs structures., 0,,.		0
313	Magneto-optical spectroscopy of defects in wide bandgap semiconductors: GaN and SiC. , 0, , .		0
314	Spin Polarization and Injection in ZnMnSe/ZnCdSe Heterostructures. Materials Research Society Symposia Proceedings, 2001, 690, F1.7.1.	0.1	0
315	Role of hydrogen in improving optical quality of GaNAs alloys. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 20, 313-316.	1.3	0
316	High Energy Optical Transitions in Ga(PN): Contribution from Perturbed Valence Band. AIP Conference Proceedings, 2005, , .	0.3	0
317	New Insight into the Electronic Properties of GaNP Alloys. AIP Conference Proceedings, 2005, , .	0.3	0
318	Ga-interstitial related defects in Ga(Al)NP. AIP Conference Proceedings, 2005, , .	0.3	0
319	Spin depolarization in semiconductor spin detectors. , 2006, , .		0
320	Signatures of grown-in defects in GalnNP alloys grown on a GaAs substrate from magnetic resonance studies. Physica B: Condensed Matter, 2006, 376-377, 571-574.	1.3	0
321	Transient Spectroscopy of Optical Spin Injection in ZnMnSe/ZnCdSe Quantum Structures. Journal of Superconductivity and Novel Magnetism, 2006, 18, 371-373.	0.5	0
322	Prospects of Potential Semiconductor Spin Detectors. Solid State Phenomena, 2007, 124-126, 839-842.	0.3	0
323	Spin Dynamics of Type-II Excitons in Diluted Magnetic Double Quantum Wells. AIP Conference Proceedings, 2007, , .	0.3	0
324	Role of Nitrogen In Photoluminescence Up-conversion In GalnNP/GaAs Heterostructures. AIP Conference Proceedings, 2007, , .	0.3	0

#	Article	IF	Citations
325	Optically detected cyclotron resonance studies of InGaNAs/GaAs structures. AIP Conference Proceedings, 2007, , .	0.3	O
326	Spin injection in a coupled system of a diluted magnetic semiconductor Zn0.80Mn0.20Se and self-assembled quantum dots of CdSe. Superlattices and Microstructures, 2008, 43, 615-619.	1.4	0
327	Effect of growth conditions on grownâ€in defect formation and luminescence efficiency in Ga(In)NP epilayers grown by molecularâ€beam epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 460-463.	0.8	0
328	Effects of grown-in defects on electron spin polarization in dilute nitride alloys. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1529-1531.	0.8	0
329	Spin resonance spectroscopy of grown-in defects in Ga(In)NP alloys. Superlattices and Microstructures, 2008, 43, 620-625.	1.4	0
330	Propagation dynamics of exciton spins in a highâ€density semiconductor quantum dot system. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 50-52.	0.8	0
331	Long delays of light in ZnO caused by excitonâ€polariton propagation. Physica Status Solidi (B): Basic Research, 2012, 249, 1307-1311.	0.7	0
332	Back Cover: Long delays of light in ZnO caused by exciton-polariton propagation (Phys. Status Solidi B) Tj ETQqC	0 0 grgBT	/Overlock 10
333	Characterization of quantum dot-like emission from GaAs/GaNAs core/shell nanowires., 2016,,.		0
334	Spin injection and detection in semiconductor nanostructures. , 2016, , .		0
335	Spin injection loss in self-assembled InAs/GaAs quantum dot structures from disordered barrier layers. , 2016, , .		0
336	Room Temperature Defect-Engineered Spin Functionalities: Concept and Optimization. , 2017, , 33-54.		0
337	Defect-enabled room-temperature spin functionalities in a nonmagnetic semiconductor. , 2018, , 265-284.		0
338	Disorder-Activated Resonant Raman Scattering in GaNAs/GaAs Structures. Springer Proceedings in Physics, 2001, , 73-74.	0.1	0
339	Recombination Processes of GaNAs/GaAs structures: Effect of Rapid Thermal Annealing. Springer Proceedings in Physics, 2001, , 559-560.	0.1	0
340	On the Origin of Light Emission in GaNxP1-x. Materials Research Society Symposia Proceedings, 2002, 722, 421.	0.1	0
341	Transfer Dynamics of Spin-Polarized Excitons in ZnCdMnSe/ZnCdSe Double Quantum Wells. Journal of the Korean Physical Society, 2008, 53, 167-170.	0.3	0
342	Spin-Injection Dynamics and Effects of Spin Relaxation in Self-Assembled Quantum Dots of CdSe. Journal of the Korean Physical Society, 2008, 53, 163-166.	0.3	0

#	Article	IF	CITATIONS
343	Efficient Spin Filter Based on Non-Magnetic Semiconductor GaNAs. , 2009, , .		О
344	Relaxation Phenomena in GaN/ AlN/ 6H-SiC Heterostructures. MRS Internet Journal of Nitride Semiconductor Research, 1999, 4, 423-428.	1.0	0
345	Spin-Polarized Light Emitting Self-Assembled InAs/GaAs Quantum-Dot Molecular Structures: The Dominant Mechanism for Spin Loss during Spin Injection. ECS Meeting Abstracts, 2016, , .	0.0	0
346	Effects of N Incorporation on Carrier Recombination in GaAs-Based Nanowires Grown By Molecular Beam Epitaxy on Si Substrates. ECS Meeting Abstracts, 2016, , .	0.0	0
347	GaNAs-Based Nanowires for Near-Infrared Optoelectronics. , 2017, , 133-159.		0
348	Novel GaNP Nanowires for Advanced Optoelectronics and Photonics. , 2017, , 107-132.		0
349	Optical and Electronic Properties of GalnNP Alloys: A New Material for Lattice Matching to GaAs. , 2008, , 301-316.		0