
Shiyu Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1031720/publications.pdf Version: 2024-02-01

SHIVE FENC

#	Article	IF	CITATIONS
1	High efficiency ternary organic solar cells via morphology regulation with asymmetric nonfused ring electron acceptor. Chemical Engineering Journal, 2022, 438, 135384.	6.6	14
2	Rigidityâ€Tuned Fullâ€Color Emission: Uncommon Luminescence Change from Polymer Freeâ€Volume Variations. Advanced Materials, 2022, 34, e2201337.	11.1	12
3	Combustion characteristics and typical pollutant emissions of corn stalk blending with municipal sewage sludge. Environmental Science and Pollution Research, 2021, 28, 9792-9805.	2.7	16
4	Responsive Zwitterionic Polymers with Humidity and Voltage Dual-Switching for Multilevel Date Encryption and Anticounterfeiting. Chemistry of Materials, 2021, 33, 1477-1488.	3.2	10
5	High-k polymer dielectrics with different cross-linked networks for nonvolatile transistor memory device. Organic Electronics, 2021, 96, 106222.	1.4	3
6	Patterning, morphing, and coding of gel composites by direct ink writing. Journal of Materials Chemistry A, 2021, 9, 8586-8597.	5.2	8
7	Regulating the Packing of Non-Fullerene Acceptors via Multiple Noncovalent Interactions for Enhancing the Performance of Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 4638-4648.	4.0	87
8	Enhancing the Photovoltaic Performance of a Benzo[<i>c</i>][1,2,5]thiadiazole-Based Polymer Donor via a Non-Fullerene Acceptor Pairing Strategy. ACS Applied Materials & Interfaces, 2020, 12, 53021-53028.	4.0	6
9	Efficient Ternary Organic Solar Cells with a New Electron Acceptor Based on 3,4-(2,2-Dihexylpropylenedioxy)thiophene. ACS Applied Materials & Interfaces, 2020, 12, 40590-40598.	4.0	18
10	Organic Single-Crystal Transistor with Unique Photo Responses and Its Application as Light-Stimulated Synaptic Devices. ACS Applied Materials & Interfaces, 2020, 12, 30627-30634.	4.0	21
11	Synthesizing Organo/Hydrogel Hybrids with Diverse Programmable Patterns and Ultrafast Selfâ€Actuating Ability via a Siteâ€5pecific "In Situ―Transformation Strategy. Advanced Functional Materials, 2020, 30, 2002163.	7.8	12
12	Nonvolatile Transistor Memory Based on a High- <i>k</i> Dielectric Polymer Blend for Multilevel Data Storage, Encryption, and Protection. Chemistry of Materials, 2020, 32, 3641-3650.	3.2	20
13	Highâ€Efficiency Asâ€Cast Organic Solar Cells Based on Acceptors with Steric Hindrance Induced Planar Terminal Group. Advanced Energy Materials, 2019, 9, 1901280.	10.2	86
14	Noncovalently fused-ring electron acceptors with near-infrared absorption for high-performance organic solar cells. Nature Communications, 2019, 10, 3038.	5.8	297
15	Influence of Sewage Sludge on Ash Fusion during Combustion of Maize Straw. Energy & Fuels, 2019, 33, 10237-10246.	2.5	12
16	Dihydropyreno[1,2-b:6,7-b′]dithiophene based electron acceptors for high efficiency as-cast organic solar cells. Journal of Materials Chemistry A, 2019, 7, 5943-5948.	5.2	21
17	Nonfullerene acceptors with a novel nonacyclic core for high-performance polymer solar cells. Journal of Materials Chemistry C, 2019, 7, 3335-3341.	2.7	5
18	Controlling Molecular Packing and Orientation via Constructing a Ladder-Type Electron Acceptor with Asymmetric Substituents for Thick-Film Nonfullerene Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 3098-3106.	4.0	40

Shiyu Feng

#	Article	IF	CITATIONS
19	Fused-ring acceptor with a spiro-bridged ladder-type core for organic solar cells. Dyes and Pigments, 2019, 163, 153-158.	2.0	9
20	Fused pentacyclic electron acceptors with four <i>cis</i> -arranged alkyl side chains for efficient polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 3724-3729.	5.2	27
21	High efficiency ternary polymer solar cells based on a fused pentacyclic electron acceptor. Journal of Materials Chemistry A, 2018, 6, 6854-6859.	5.2	16
22	The design of highly efficient polymer solar cells with outstanding short-circuit current density based on small band gap electron acceptor. Dyes and Pigments, 2018, 150, 363-369.	2.0	15
23	Enhancing the Performance of Non-Fullerene Organic Solar Cells Using Regioregular Wide-Bandgap Polymers. Macromolecules, 2018, 51, 8646-8651.	2.2	39
24	Enhance the performance of polymer solar cells via extension of the flanking end groups of fused ring acceptors. Science China Chemistry, 2018, 61, 1320-1327.	4.2	22
25	Nonfullerene Acceptors with Enhanced Solubility and Ordered Packing for High-Efficiency Polymer Solar Cells. ACS Energy Letters, 2018, 3, 1832-1839.	8.8	115
26	A propeller-shaped perylene diimide hexamer as a nonfullerene acceptor for organic solar cells. Journal of Materials Chemistry C, 2018, 6, 9336-9340.	2.7	28
27	Enhancing the Performance of Organic Solar Cells by Hierarchically Supramolecular Self-Assembly of Fused-Ring Electron Acceptors. Chemistry of Materials, 2018, 30, 4307-4312.	3.2	116
28	Exploiting Noncovalently Conformational Locking as a Design Strategy for High Performance Fused-Ring Electron Acceptor Used in Polymer Solar Cells. Journal of the American Chemical Society, 2017, 139, 3356-3359.	6.6	499
29	Enhancing the Performance of Polymer Solar Cells by Using Donor Polymers Carrying Discretely Distributed Side Chains. ACS Applied Materials & Interfaces, 2017, 9, 24020-24026.	4.0	14
30	Simultaneous enhancement of the molecular planarity and the solubility of non-fullerene acceptors: effect of aliphatic side-chain substitution on the photovoltaic performance. Journal of Materials Chemistry A, 2017, 5, 7776-7783.	5.2	87
31	Influence of polymer side chains on the photovoltaic performance of non-fullerene organic solar cells. Journal of Materials Chemistry C, 2017, 5, 937-942.	2.7	19
32	Fusedâ€Ring Acceptors with Asymmetric Side Chains for Highâ€Performance Thickâ€Film Organic Solar Cells. Advanced Materials, 2017, 29, 1703527.	11.1	238
33	Effect of Non-fullerene Acceptors' Side Chains on the Morphology and Photovoltaic Performance of Organic Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 33906-33912.	4.0	66
34	Molecular "Flower―as the High-Mobility Hole-Transport Material for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 43855-43860.	4.0	31
35	Non-fullerene small molecular acceptors with a carbazole core for organic solar cells with high open-circuit voltage. Dyes and Pigments, 2017, 146, 293-299.	2.0	17
36	Enhancing the Efficiency of Polymer Solar Cells by Incorporation of 2,5-Difluorobenzene Units into the Polymer Backbone via Random Copolymerization. ACS Applied Materials & Interfaces, 2017, 9, 23775-23781.	4.0	9

Shiyu Feng

#	Article	IF	CITATIONS
37	High efficiency polymer solar cells based on alkylthio substituted benzothiadiazole-quaterthiophene alternating conjugated polymers. Organic Electronics, 2017, 40, 36-41.	1.4	16
38	Ternaryâ€Blend Polymer Solar Cells Combining Fullerene and Nonfullerene Acceptors to Synergistically Boost the Photovoltaic Performance. Advanced Materials, 2016, 28, 9559-9566.	11.1	267
39	Effect of bifurcation point of alkoxy side chains on photovoltaic performance of 5-alkoxy-6-fluorobenzo[c][1,2,5]thiadiazole-based conjugated polymers. Solar Energy Materials and Solar Cells, 2016, 154, 42-48.	3.0	5
40	4-Alkyl-3,5-difluorophenyl-Substituted Benzodithiophene-Based Wide Band Gap Polymers for High-Efficiency Polymer Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 3686-3692.	4.0	75