Qi Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1031498/publications.pdf

Version: 2024-02-01

		109321		155660
76	3,259	35		55
papers	citations	h-index		g-index
			. '	
7.6	7.	7.0		0001
76	76	76		2301
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Preparation, characterization and acetone sensing properties of Ce-doped SnO2 hollow spheres. Sensors and Actuators B: Chemical, 2012, 173, 839-846.	7.8	174
2	Enhanced methanol gas-sensing performance of Ce-doped In2O3 porous nanospheres prepared by hydrothermal method. Sensors and Actuators B: Chemical, 2015, 216, 488-496.	7.8	152
3	Facile synthesis, characterization and gas sensing performance of ZnO nanoparticles-coated MoS2 nanosheets. Journal of Alloys and Compounds, 2016, 662, 118-125.	5.5	125
4	Hydrothermal synthesis of porous In2O3 nanospheres with superior ethanol sensing properties. Sensors and Actuators B: Chemical, 2014, 196, 434-439.	7.8	121
5	Flexible MXene/rGO/CuO hybrid aerogels for high performance acetone sensing at room temperature. Sensors and Actuators B: Chemical, 2021, 340, 129946.	7.8	117
6	Highly sensitive detection of acetone using mesoporous In2O3 nanospheres decorated with Au nanoparticles. Sensors and Actuators B: Chemical, 2017, 242, 983-993.	7.8	115
7	Preparation of biomorphic porous LaFeO3 by sorghum straw biotemplate method and its acetone sensing properties. Sensors and Actuators B: Chemical, 2014, 196, 140-146.	7.8	106
8	A low temperature gas sensor based on Au-loaded MoS2 hierarchical nanostructures for detecting ammonia. Ceramics International, 2016, 42, 9327-9331.	4.8	103
9	Synthesis and gas sensing properties of biomorphic LaFeO3 hollow fibers templated from cotton. Sensors and Actuators B: Chemical, 2010, 147, 248-254.	7.8	96
10	MOF-derived α-Fe2O3 porous spindle combined with reduced graphene oxide for improvement of TEA sensing performance. Sensors and Actuators B: Chemical, 2020, 304, 127306.	7.8	83
11	Preparation of porous LaFeO3 microspheres and their gas-sensing property. Applied Surface Science, 2015, 337, 65-71.	6.1	80
12	In2O3 nanocubes/Ti3C2Tx MXene composites for enhanced methanol gas sensing properties at room temperature. Ceramics International, 2021, 47, 23028-23037.	4.8	78
13	\hat{l}_{\pm} -Fe2O3 nanocubes/Ti3C2Tx MXene composites for improvement of acetone sensing performance at room temperature. Sensors and Actuators B: Chemical, 2021, 349, 130782.	7.8	72
14	Self-assembled hierarchical Au-loaded In 2 O 3 hollow microspheres with superior ethanol sensing properties. Sensors and Actuators B: Chemical, 2016, 231, 245-255.	7.8	70
15	Trimethylamine detection of 3D rGO/mesoporous In2O3 nanocomposites at room temperature. Applied Surface Science, 2019, 465, 625-634.	6.1	70
16	Enhanced trimethylamine sensing performance of single-crystal MoO3 nanobelts decorated with Au nanoparticles. Journal of Alloys and Compounds, 2016, 685, 1024-1033.	5 . 5	66
17	Acetone sensing characteristics of ZnO hollow spheres prepared by one-pot hydrothermal reaction. Materials Letters, 2012, 86, 168-170.	2.6	64
18	Spindle-like Fe2O3/ZnFe2O4 porous nanocomposites derived from metal-organic frameworks with excellent sensing performance towards triethylamine. Sensors and Actuators B: Chemical, 2020, 317, 128205.	7.8	64

#	Article	IF	Citations
19	Construction of porous LaFeO3 microspheres decorated with NiO nanosheets for high response ethanol gas sensors. Applied Surface Science, 2020, 515, 146025.	6.1	64
20	Facile approach to prepare hierarchical Au-loaded In2O3 porous nanocubes and their enhanced sensing performance towards formaldehyde. Sensors and Actuators B: Chemical, 2017, 241, 1130-1138.	7.8	63
21	Template-assisted synthesis of hierarchical MoO3 microboxes and their high gas-sensing performance. Sensors and Actuators B: Chemical, 2017, 249, 458-466.	7.8	60
22	Metal-organic frameworks-derived In2O3 microtubes/Ti3C2Tx MXene composites for NH3 detection at room temperature. Sensors and Actuators B: Chemical, 2022, 361, 131755.	7.8	59
23	In situ formation of one-dimensional CoMoO4/MoO3 heterojunction as an effective trimethylamine gas sensor. Ceramics International, 2018, 44, 3364-3370.	4.8	57
24	Cu2O-BiOI isotype (p-p) heterojunction: Boosted visible-light-driven photoelectrochemical activity for non-enzymatic H2O2 sensing. Applied Surface Science, 2020, 521, 146434.	6.1	52
25	A simple large-scale synthesis of mesoporous In2O3 for gas sensing applications. Applied Surface Science, 2016, 378, 443-450.	6.1	47
26	Sensing performance of \hat{l}_{\pm} -Fe2O3/Ti3C2Tx MXene nanocomposites to NH3 at room temperature. Journal of Alloys and Compounds, 2022, 898, 162812.	5.5	47
27	ppb level triethylamine detection of yolk-shell SnO2/Au/Fe2O3 nanoboxes at low-temperature. Applied Surface Science, 2019, 476, 391-401.	6.1	46
28	ZnSnO3 nanocubes/Ti3C2Tx MXene composites for enhanced formaldehyde gas sensing properties at room temperature. Applied Surface Science, 2022, 598, 153861.	6.1	46
29	Synthesis of novel RuO2/LaFeO3 porous microspheres its gas sensing performances towards triethylamine. Journal of Alloys and Compounds, 2019, 806, 960-967.	5.5	45
30	Flower-like In ₂ O ₃ hierarchical nanostructures: synthesis, characterization, and gas sensing properties. RSC Advances, 2014, 4, 50241-50248.	3.6	43
31	In ₂ O ₃ -functionalized MoO ₃ heterostructure nanobelts with improved gas-sensing performance. RSC Advances, 2016, 6, 50423-50430.	3.6	42
32	Metal-organic framework-derived Cr-doped hollow In2O3 nanoboxes with excellent gas-sensing performance toward ammonia. Journal of Alloys and Compounds, 2021, 879, 160472.	5.5	42
33	Synthesis of Ba-doped porous LaFeO3 microspheres with perovskite structure for rapid detection of ethanol gas. Rare Metals, 2021, 40, 1651-1661.	7.1	40
34	Synthesis of porous SnO 2 hexagon nanosheets loaded with Au nanoparticles for high performance gas sensors. Materials Letters, 2017, 201, 211-215.	2.6	37
35	Au nanoparticles modified MoO3 nanosheets with their enhanced properties for gas sensing. Sensors and Actuators B: Chemical, 2016, 236, 201-207.	7.8	36
36	Hierarchical peony-like Sb-doped SnO2 nanostructures: Synthesis, characterization and HCHO sensing properties. Materials Letters, 2017, 191, 173-177.	2.6	35

#	Article	IF	Citations
37	rGO-wrapped porous LaFeO3 microspheres for high-performance triethylamine gas sensors. Ceramics International, 2020, 46, 9363-9369.	4.8	34
38	Enhanced acetone sensing performance of an \hat{l}_{\pm} -Fe 2 O 3 -In 2 O 3 heterostructure nanocomposite sensor. Journal of Physics and Chemistry of Solids, 2018, 120, 261-270.	4.0	32
39	Controllable synthesis of novel ZnSn(OH)6 hollow polyhedral structures with superior ethanol gas-sensing performance. Sensors and Actuators B: Chemical, 2015, 209, 384-390.	7.8	31
40	Enhanced triethylamine sensing performance of MoO3 nanobelts by RuO2 nanoparticles decoration. Vacuum, 2019, 162, 85-91.	3.5	31
41	Highly sensitive and selective trimethylamine sensors based on WO 3 nanorods decorated with Au nanoparticles. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 90, 109-115.	2.7	30
42	Reduced graphene oxide-porous In2O3 nanocubes hybrid nanocomposites for room-temperature NH3 sensing. Chinese Chemical Letters, 2020, 31, 2067-2070.	9.0	29
43	Ag nanoparticles-functionalized dumbbell-shaped In2O3 derived from MIL-68(In) with excellent sensitivity to formaldehyde. Journal of Alloys and Compounds, 2021, 888, 161509.	5.5	29
44	Cu2O template-assisted synthesis of porous In2O3 hollow spheres with fast response towards acetone. Materials Letters, 2014, 124, 93-96.	2.6	25
45	Synthesis of reduced graphene oxide/SnO2 nanosheets/Au nanoparticles ternary composites with enhanced formaldehyde sensing performance. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 118, 113953.	2.7	25
46	Cu-doped Fe2O3 porous spindles derived from metal-organic frameworks with enhanced sensitivity to triethylamine. Materials Science in Semiconductor Processing, 2021, 123, 105510.	4.0	25
47	2D/2D SnO2 nanosheets/Ti3C2Tx MXene nanocomposites for detection of triethylamine at low temperature. Ceramics International, 2022, 48, 9059-9066.	4.8	24
48	Gas sensor based on rGO/ZnO aerogel for efficient detection of NO2 at room temperature. Journal of Materials Science: Materials in Electronics, 2021, 32, 10058-10069.	2.2	23
49	Novel strategy to construct porous Sn-doped ZnO/ZnFe2O4 heterostructures for superior triethylamine detection. Materials Science in Semiconductor Processing, 2021, 125, 105643.	4.0	21
50	Metal-organic frameworks-derived porous α-Fe2O3 spindles decorated with Au nanoparticles for enhanced triethylamine gas-sensing performance. Journal of Alloys and Compounds, 2020, 831, 154788.	5.5	18
51	In2O3 nanosheets array directly grown on Al2O3 ceramic tube and their gas sensing performance. Ceramics International, 2017, 43, 7942-7947.	4.8	17
52	Synthesis of mesoporous In2O3 nanocubes and their superior trimethylamine sensing properties. Materials Science in Semiconductor Processing, 2018, 75, 58-64.	4.0	17
53	Facile hydrothermal synthesis of mesoporous In 2 O 3 nanoparticles with superior formaldehyde-sensing properties. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 97, 38-44.	2.7	17
54	Hierarchical assembly of SnO2 nanorod on spindle-like α-Fe2O3 for enhanced acetone gas-sensing performance. Ceramics International, 2021, 47, 12181-12188.	4.8	16

#	Article	IF	CITATIONS
55	Synthesis of porous SnO2 nanocubes via selective leaching and enhanced gas-sensing properties. Applied Surface Science, 2016, 360, 1059-1065.	6.1	15
56	Porous LaFeO3 microspheres decorated with Au nanoparticles for superior formaldehyde gas-sensing performances. Journal of Materials Science: Materials in Electronics, 2020, 31, 4632-4641.	2.2	15
57	Three-dimensional reduced graphene oxide/cobaltosic oxide as a high-response sensor for triethylamine gas at room temperature. Materials Science in Semiconductor Processing, 2021, 133, 105904.	4.0	15
58	Hydrothermal preparation and acetone-sensing properties of Ni-doped porous LaFeO3 microspheres. Journal of Materials Science: Materials in Electronics, 2020, 31, 6679-6689.	2.2	14
59	An ultrasensitive sandwich-type electrochemical immunosensor for carcino embryonie antigen based on supermolecular labeling strategy. Journal of Electroanalytical Chemistry, 2016, 781, 289-295.	3.8	12
60	Hierarchical assembly of Fe2O3 nanorods on SnO2 nanospheres with enhanced ethanol sensing properties. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 103, 156-163.	2.7	12
61	Template-free fabrication of hierarchical In2O3 hollow microspheres with superior HCHO-sensing properties. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 99, 152-159.	2.7	11
62	Enhanced triethylamine gas sensing performance of the PbS nanoparticles-functionalized MoO3 nanobelts. Journal of Materials Science: Materials in Electronics, 2019, 30, 2898-2907.	2.2	11
63	Highly sensitive and selective triethylamine gas sensor based on Ag nanoparticles-decorated MoO ₃ nanobelts. Materials Research Express, 2019, 6, 125910.	1.6	10
64	Ce-doped hollow In2O3 nanoboxes derived from metal–organic frameworks with excellent formaldehyde-sensing performance. Journal of Materials Science: Materials in Electronics, 2021, 32, 27290-27304.	2.2	10
65	Porous ZnO cubes derived from metal–organic frameworks with excellent sensing performance triethylamine. Journal of Materials Science: Materials in Electronics, 2020, 31, 838-847.	2.2	9
66	Enhanced trimethylamine sensing properties of ternary rGO/MoO3/Au hybrid nanomaterials. Journal of Materials Science: Materials in Electronics, 2020, 31, 20549-20560.	2.2	9
67	MOF-derived In2O3 nanotubes/Cr2O3 nanoparticles composites for superior ethanol gas-sensing performance at room temperature. Ceramics International, 2022, 48, 28334-28342.	4.8	9
68	Facile synthesis of Au-decorated α-Fe2O3/rGO ternary hybrid structure nanocomposites for enhanced triethylamine gas-sensing properties. Journal of Materials Science: Materials in Electronics, 2020, 31, 22713-22726.	2.2	8
69	MOF-derived In2O3 microtubes as an effective sensing material for sub-ppm-level triethylamine detection. Inorganic Chemistry Communication, 2022, 140, 109455.	3.9	8
70	Metal-organic framework-derived In-doped Fe2O3 spindles with enhanced acetone gas sensing performance. Inorganic Chemistry Communication, 2022, 142, 109658.	3.9	8
71	Reduced graphene oxide-SnO2 nanosheets hybrid nanocomposite for improvement of formaldehyde sensing properties. Journal of Materials Science: Materials in Electronics, 2019, 30, 12204-12214.	2.2	7
72	Enhanced trimethylamine gas-sensing performance of CeO2 nanoparticles-decorated MoO3 nanorods. Journal of Materials Science: Materials in Electronics, 2022, 33, 3453-3464.	2.2	7

#	Article	IF	CITATIONS
73	Facile synthesis of CuO nanoribbons/rGO nanocomposites for high-performance formaldehyde gas sensor at low temperature. Journal of Materials Science: Materials in Electronics, 2021, 32, 19297-19308.	2.2	5
74	Ultra-fast responding C2H5OH sensors based on hierarchical assembly of SnO2 nanorods on cube-like α-Fe2O3. Journal of Materials Science: Materials in Electronics, 2018, 29, 5446-5453.	2.2	2
75	Ultra-low concentration detection of NH3 using rGO/Cu2O nanocomposites at low temperature. Journal of Materials Science: Materials in Electronics, 2021, 32, 22617-22628.	2.2	1
76	Structural and Acetone Sensing Properties of La-Doped Porous In ₂ O ₃ Nanospheres by Hydrothermal Synthesis. Advanced Materials Research, 2014, 1053, 177-180.	0.3	O