
Tianyi Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1030804/publications.pdf Version: 2024-02-01

ΤΙΔΝΥΙ ΗΠΑΝΟ

#	Article	IF	CITATIONS
1	Nearâ€Infrared Materials: The Turning Point of Organic Photovoltaics. Advanced Materials, 2022, 34, e2107330.	11.1	111
2	Rethinking the A cation in halide perovskites. Science, 2022, 375, eabj1186.	6.0	207
3	Stability-limiting heterointerfaces of perovskite photovoltaics. Nature, 2022, 605, 268-273.	13.7	229
4	Lattice strain suppresses point defect formation in halide perovskites. Nano Research, 2022, 15, 5746-5751.	5.8	21
5	Light-induced trap emptying revealed by intensity-dependent quantum efficiency of organic solar cells. Journal of Applied Physics, 2022, 131, 135501.	1.1	5
6	Wideâ€Gap Perovskite via Synergetic Surface Passivation and Its Application toward Efficient Stacked Tandem Photovoltaics. Small, 2022, 18, e2103887.	5.2	3
7	Towards High-Performance Semitransparent Organic Photovoltaics: Dual-Functional <i>p</i> -Type Soft Interlayer. ACS Nano, 2022, 16, 1231-1238.	7.3	12
8	Rational selection of the polymeric structure for interface engineering of perovskite solar cells. Joule, 2022, 6, 1032-1048.	11.7	72
9	Stable and Efficient Methylammoniumâ€; Cesiumâ€; and Bromideâ€Free Perovskite Solar Cells by Inâ€5itu Interlayer Formation. Advanced Functional Materials, 2021, 31, 2007520.	7.8	34
10	Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations. Science, 2021, 371, 636-640.	6.0	184
11	Surface Reconstruction of Halide Perovskites During Post-treatment. Journal of the American Chemical Society, 2021, 143, 6781-6786.	6.6	109
12	Prospects for metal halide perovskite-based tandem solar cells. Nature Photonics, 2021, 15, 411-425.	15.6	195
13	Tailored Key Parameters of Perovskite for High-Performance Photovoltaics. Accounts of Materials Research, 2021, 2, 447-457.	5.9	5
14	Unraveling the surface state of photovoltaic perovskite thin film. Matter, 2021, 4, 2417-2428.	5.0	22
15	Material, Phase, and Interface Stability of Photovoltaic Perovskite: A Perspective. Journal of Physical Chemistry C, 2021, 125, 19088-19096.	1.5	7
16	Defect passivation of perovskites in high efficiency solar cells. JPhys Energy, 2021, 3, 042003.	2.3	13
17	Performance-limiting formation dynamics in mixed-halide perovskites. Science Advances, 2021, 7, eabj1799.	4.7	54
18	The Original Design Principles of the Y-Series Nonfullerene Acceptors, from Y1 to Y6. ACS Nano, 2021, 15, 18679-18682.	7.3	51

Tianyi Huang

#	Article	IF	CITATIONS
19	Translating local binding energy to a device effective one. Sustainable Energy and Fuels, 2020, 4, 760-771.	2.5	8
20	Potassium-Presenting Zinc Oxide Surfaces Induce Vertical Phase Separation in Fullerene-Free Organic Photovoltaics. Nano Letters, 2020, 20, 715-721.	4.5	48
21	Shallow Iodine Defects Accelerate the Degradation of α-Phase Formamidinium Perovskite. Joule, 2020, 4, 2426-2442.	11.7	173
22	Molecular Interaction Regulates the Performance and Longevity of Defect Passivation for Metal Halide Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 20071-20079.	6.6	145
23	The surface of halide perovskites from nano to bulk. Nature Reviews Materials, 2020, 5, 809-827.	23.3	224
24	Quantitative Specifications to Avoid Degradation during E-Beam and Induced Current Microscopy of Halide Perovskite Devices. Journal of Physical Chemistry C, 2020, 124, 18961-18967.	1.5	4
25	Solid-phase hetero epitaxial growth of α-phase formamidinium perovskite. Nature Communications, 2020, 11, 5514.	5.8	71
26	Transparent Holeâ€Transporting Frameworks: A Unique Strategy to Design Highâ€Performance Semitransparent Organic Photovoltaics. Advanced Materials, 2020, 32, e2003891.	11.1	60
27	Narrowing the Band Gap: The Key to High-Performance Organic Photovoltaics. Accounts of Chemical Research, 2020, 53, 1218-1228.	7.6	171
28	A Polymerizationâ€Assisted Grain Growth Strategy for Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2020, 32, e1907769.	11.1	161
29	Redox-inactive samarium(III) acetylacetonate as dopant enabling cation substitution and interfacial passivation for efficient and stable CsPbI2Br perovskite solar cells. APL Materials, 2020, 8, 071102.	2.2	12
30	High Performance Indiumâ€Galliumâ€Zinc Oxide Thin Film Transistor via Interface Engineering. Advanced Functional Materials, 2020, 30, 2003285.	7.8	33
31	Steric Impediment of Ion Migration Contributes to Improved Operational Stability of Perovskite Solar Cells. Advanced Materials, 2020, 32, e1906995.	11.1	142
32	Crystalline Liquid-like Behavior: Surface-Induced Secondary Grain Growth of Photovoltaic Perovskite Thin Film. Journal of the American Chemical Society, 2019, 141, 13948-13953.	6.6	163
33	Design of a Rigid Scaffold Structure toward Efficient and Stable Organic Photovoltaics. Matter, 2019, 1, 402-411.	5.0	8
34	A Smallâ€Molecule "Charge Driver―enables Perovskite Quantum Dot Solar Cells with Efficiency Approaching 13%. Advanced Materials, 2019, 31, e1900111.	11.1	92
35	Core–Shell ZnO@SnO ₂ Nanoparticles for Efficient Inorganic Perovskite Solar Cells. Journal of the American Chemical Society, 2019, 141, 17610-17616.	6.6	113
36	Rational Tuning of Molecular Interaction and Energy Level Alignment Enables Highâ€Performance Organic Photovoltaics. Advanced Materials, 2019, 31, e1904215.	11.1	162

Tianyi Huang

#	Article	IF	CITATIONS
37	Highly Efficient Semitransparent Organic Solar Cells with Color Rendering Index Approaching 100. Advanced Materials, 2019, 31, e1807159.	11.1	152
38	Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nature Communications, 2019, 10, 520.	5.8	405
39	Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nature Communications, 2019, 10, 570.	5.8	377
40	Enabling Efficient Tandem Organic Photovoltaics with High Fill Factor via Reduced Charge Recombination. ACS Energy Letters, 2019, 4, 1535-1540.	8.8	18
41	Caffeine Improves the Performance and Thermal Stability of Perovskite Solar Cells. Joule, 2019, 3, 1464-1477.	11.7	448
42	Verification and mitigation of ion migration in perovskite solar cells. APL Materials, 2019, 7, .	2.2	179
43	A Review of Perovskites Solar Cell Stability. Advanced Functional Materials, 2019, 29, 1808843.	7.8	835
44	Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science, 2019, 366, 1509-1513.	6.0	846
45	Unraveling Sunlight by Transparent Organic Semiconductors toward Photovoltaic and Photosynthesis. ACS Nano, 2019, 13, 1071-1077.	7.3	134
46	Efficient Tandem Organic Photovoltaics with Tunable Rear Sub-cells. Joule, 2019, 3, 432-442.	11.7	65
47	Tuning Molecular Interactions for Highly Reproducible and Efficient Formamidinium Perovskite Solar Cells via Adduct Approach. Journal of the American Chemical Society, 2018, 140, 6317-6324.	6.6	338
48	Tailored Phase Conversion under Conjugated Polymer Enables Thermally Stable Perovskite Solar Cells with Efficiency Exceeding 21%. Journal of the American Chemical Society, 2018, 140, 17255-17262.	6.6	235
49	Unique Energy Alignments of a Ternary Material System toward Highâ€Performance Organic Photovoltaics. Advanced Materials, 2018, 30, e1801501.	11.1	116
50	2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nature Communications, 2018, 9, 3021.	5.8	575
51	Transparent Polymer Photovoltaics for Solar Energy Harvesting and Beyond. Joule, 2018, 2, 1039-1054.	11.7	211
52	Metal Oxide Nanostructures Generated from In Situ Sacrifice of Zinc in Bimetallic Textures as Flexible Ni/Fe Fast Battery Electrodes. Chemistry - an Asian Journal, 2017, 12, 1920-1926.	1.7	6