List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1030593/publications.pdf Version: 2024-02-01

Πονιάνε Ζηλο

#	Article	IF	CITATIONS
1	Aggregation of carboxyl-modified polystyrene nanoplastics in water with aluminum chloride: Structural characterization and theoretical calculation. Water Research, 2022, 208, 117884.	5.3	36
2	Field demonstration of on-site immobilization of arsenic and lead in soil using a ternary amending agent. Journal of Hazardous Materials, 2022, 426, 127791.	6.5	7
3	Application of Titanate Nanotubes for Photocatalytic Decontamination in Water: Challenges and Prospects. ACS ES&T Engineering, 2022, 2, 1015-1038.	3.7	24
4	FeS-mediated mobilization and immobilization of Cr(III) in oxic aquatic systems. Water Research, 2022, 211, 118077.	5.3	19
5	H3PO4 activation mediated the iron phase transformation and enhanced the removal of bisphenol A on iron carbide-loaded activated biochar. Environmental Pollution, 2022, 300, 118965.	3.7	12
6	New insight into environmental photochemistry of PAHs induced by dissolved organic matters: A model of naphthalene in seawater. Chemical Engineering Research and Design, 2022, 161, 325-333.	2.7	7
7	Mechanochemical destruction and mineralization of solid-phase hexabromocyclododecane assisted by microscale zero-valent aluminum. Science of the Total Environment, 2022, 824, 153864.	3.9	7
8	Concentrate and degrade PFOA with a photo-regenerable composite of In-doped TNTs@AC. Chemosphere, 2022, 300, 134495.	4.2	13
9	Photocatalytic degradation of GenX in water using a new adsorptive photocatalyst. Water Research, 2022, 220, 118650.	5.3	32
10	Carbon-modified/embedded zero-valent aluminum microparticles will control electron release for efficient adsorption and degradation of aqueous pollutants. Journal of Cleaner Production, 2022, 366, 133013.	4.6	4
11	Simultaneous adsorption of uranium(VI) and 2-chlorophenol by activated carbon fiber supported/modified titanate nanotubes (TNTs/ACF): Effectiveness and synergistic effects. Chemical Engineering Journal, 2021, 406, 126752.	6.6	89
12	Enhanced removal of zinc and cadmium from water using carboxymethyl cellulose-bridged chlorapatite nanoparticles. Chemosphere, 2021, 263, 128038.	4.2	14
13	Simultaneous immobilization of multi-metals in a field contaminated acidic soil using carboxymethyl-cellulose-bridged nano-chlorapatite and calcium oxide. Journal of Hazardous Materials, 2021, 407, 124786.	6.5	18
14	Biological aqua crust mitigates metal(loid) pollution and the underlying immobilization mechanisms. Water Research, 2021, 190, 116736.	5.3	17
15	Compositional evolution of nanoscale zero valent iron and 2,4-dichlorophenol during dechlorination by attapulgite supported Fe/Ni nanoparticles. Journal of Hazardous Materials, 2021, 412, 125246.	6.5	31
16	Evaluation of three common alkaline agents for immobilization of multi-metals in a field-contaminated acidic soil. Environmental Science and Pollution Research, 2021, 28, 60765-60777.	2.7	3
17	Iron(II) sulfate crystals assisted mechanochemical modification of microscale zero-valent aluminum (mZVAl) for oxidative degradation of phenol in water. Chemosphere, 2021, 274, 129767.	4.2	13
18	Field assessment of carboxymethyl cellulose bridged chlorapatite microparticles for immobilization of lead in soil: Effectiveness, long-term stability, and mechanism. Science of the Total Environment, 2021, 781, 146757.	3.9	14

#	Article	IF	CITATIONS
19	Experimental evidences and theoretical calculations on phenanthrene degradation in a solar-light-driven photocatalysis system using silica aerogel supported TiO2 nanoparticles: Insights into reactive sites and energy evolution. Chemical Engineering Journal, 2021, 419, 129605.	6.6	56
20	A novel ball-milled aluminum-carbon composite for enhanced adsorption and degradation of hexabromocyclododecane. Chemosphere, 2021, 279, 130520.	4.2	15
21	Response to comments on "Enhanced photocatalytic degradation of perfluorooctanoic acid using carbon-modified bismuth phosphate composite: Effectiveness, material synergy and roles of carbon― [Chem. Eng. J. 395 (2020) 124991]. Chemical Engineering Journal, 2021, 419, 129359.	6.6	0
22	Microwave-enhanced reductive immobilization of high concentrations of chromium in a field soil using iron polysulfide. Journal of Hazardous Materials, 2021, 418, 126293.	6.5	21
23	Adsorption and solid-phase photocatalytic degradation of perfluorooctane sulfonate in water using gallium-doped carbon-modified titanate nanotubes. Chemical Engineering Journal, 2021, 421, 129676.	6.6	43
24	A â€~Concentrate-&-Destroy' technology for enhanced removal and destruction of per- and polyfluoroalkyl substances in municipal landfill leachate. Science of the Total Environment, 2021, 791, 148124.	3.9	21
25	Critical role of oxygen vacancies in heterogeneous Fenton oxidation over ceria-based catalysts. Journal of Colloid and Interface Science, 2020, 558, 163-172.	5.0	73
26	Sorption of dispersed petroleum hydrocarbons by activated charcoals: Effects of oil dispersants. Environmental Pollution, 2020, 256, 113416.	3.7	23
27	Short-chain per- and polyfluoroalkyl substances in aquatic systems: Occurrence, impacts and treatment. Chemical Engineering Journal, 2020, 380, 122506.	6.6	285
28	Immobilization of mercury by iron sulfide nanoparticles alters mercury speciation and microbial methylation in contaminated groundwater. Chemical Engineering Journal, 2020, 381, 122664.	6.6	42
29	2D/1D graphitic carbon nitride/titanate nanotubes heterostructure for efficient photocatalysis of sulfamethazine under solar light: Catalytic "hot spots―at the rutile–anatase–titanate interfaces. Applied Catalysis B: Environmental, 2020, 263, 118357.	10.8	211
30	Simultaneous control of soil erosion and arsenic leaching at disturbed land using polyacrylamide modified magnetite nanoparticles. Science of the Total Environment, 2020, 702, 134997.	3.9	22
31	Efficient removal and long-term sequestration of cadmium from aqueous solution using ferrous sulfide nanoparticles: Performance, mechanisms, and long-term stability. Science of the Total Environment, 2020, 704, 135402.	3.9	28
32	Reductive immobilization of uranium by stabilized zero-valent iron nanoparticles: Effects of stabilizers, water chemistry and long-term stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 604, 125315.	2.3	20
33	Remediation of soil and groundwater contaminated with organic chemicals using stabilized nanoparticles: Lessons from the past two decades. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	3.3	28
34	The Adsorption Selectivity of Short and Long Per- and Polyfluoroalkyl Substances (PFASs) from Surface Water Using Powder-Activated Carbon. Water (Switzerland), 2020, 12, 3287.	1.2	42
35	A concentrate-and-destroy technique for degradation of perfluorooctanoic acid in water using a new adsorptive photocatalyst. Water Research, 2020, 185, 116219.	5.3	87
36	Immobilization of perrhenate using synthetic pyrite particles: Effectiveness and remobilization potential. Science of the Total Environment, 2020, 725, 138423.	3.9	13

#	Article	IF	CITATIONS
37	Enhanced adsorption of perfluorooctanoic acid (PFOA) from water by granular activated carbon supported magnetite nanoparticles. Science of the Total Environment, 2020, 723, 137757.	3.9	58
38	Immobilization of U(VI) by stabilized iron sulfide nanoparticles: Water chemistry effects, mechanisms, and long-term stability. Chemical Engineering Journal, 2020, 393, 124692.	6.6	52
39	Screening for the action mechanisms of Fe and Ni in the reduction of Cr(VI) by Fe/Ni nanoparticles. Science of the Total Environment, 2020, 715, 136822.	3.9	40
40	Enhanced adsorption and photocatalytic degradation of perfluorooctanoic acid in water using iron (hydr)oxides/carbon sphere composite. Chemical Engineering Journal, 2020, 388, 124230.	6.6	60
41	Enhanced photocatalytic degradation of perfluorooctanoic acid using carbon-modified bismuth phosphate composite: Effectiveness, material synergy and roles of carbon. Chemical Engineering Journal, 2020, 395, 124991.	6.6	74
42	Editorial: Water and wastewater in a time of crisis. Water Environment Research, 2020, 92, 644-645.	1.3	0
43	Impact of an Extreme Winter Storm Event on the Coagulation/Flocculation Processes in a Prototype Surface Water Treatment Plant: Causes and Mitigating Measures. International Journal of Environmental Research and Public Health, 2019, 16, 2808.	1.2	10
44	Immobilization of hexavalent chromium in soil and groundwater using synthetic pyrite particles. Environmental Pollution, 2019, 255, 112992.	3.7	21
45	A new insight into the main mechanism of 2,4-dichlorophenol dechlorination by Fe/Ni nanoparticles. Science of the Total Environment, 2019, 697, 133996.	3.9	36
46	Removal and recovery of Pb from wastewater through a reversible phase transformation process between nano-flower-like Mg(OH) ₂ and soluble Mg(HCO ₃) ₂ . Environmental Science: Nano, 2019, 6, 467-477.	2.2	18
47	Pyrolysis of different biomass pre-impregnated with steel pickling waste liquor to prepare magnetic biochars and their use for the degradation of metronidazole. Bioresource Technology, 2019, 289, 121613.	4.8	34
48	Reductive immobilization and long-term remobilization of radioactive pertechnetate using bio-macromolecules stabilized zero valent iron nanoparticles. Chinese Chemical Letters, 2019, 30, 2163-2168.	4.8	43
49	Distribution, Source and Risk Assessment of Heavy Metal(oid)s in Water, Sediments, and Corbicula Fluminea of Xijiang River, China. International Journal of Environmental Research and Public Health, 2019, 16, 1823.	1.2	21
50	Efficient Removal of Lead from Water Using Stabilized Iron Sulfide Nanoparticles: Effectiveness and Effects of Stabilizer. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	12
51	Enhanced nutrient removal in bioretention systems modified with water treatment residuals and internal water storage zone. Environmental Science: Water Research and Technology, 2019, 5, 993-1003.	1.2	26
52	Novel high-capacity and reusable carbonaceous sponges for efficient absorption and recovery of oil from water. Applied Surface Science, 2019, 487, 398-408.	3.1	18
53	Impacts of traffic noise on roadside secondary schools in a prototype large Chinese city. Applied Acoustics, 2019, 151, 153-163.	1.7	28
54	The humic acid influenced the behavior and reactivity of Ni/Fe nanoparticles in the removal of deca-brominated diphenyl ether from aqueous solution. Environmental Science and Pollution Research, 2019, 26, 10136-10147.	2.7	10

#	Article	IF	CITATIONS
55	Treatment of per- and polyfluoroalkyl substances in landfill leachate: status, chemistry and prospects. Environmental Science: Water Research and Technology, 2019, 5, 1814-1835.	1.2	79
56	Enhanced immobilization of U(VI) using a new type of FeS-modified FeO core-shell particles. Chemical Engineering Journal, 2019, 359, 1617-1628.	6.6	60
57	Bromate reduction and reaction-enhanced perchlorate adsorption by FeCl3-impregnated granular activated carbon. Water Research, 2019, 149, 149-158.	5.3	22
58	Sequestration of pertechnetate using carboxymethyl cellulose stabilized FeS nanoparticles: Effectiveness and mechanisms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561, 373-380.	2.3	22
59	Immobilization of uranium(VI) by niobate/titanate nanoflakes heterojunction through combined adsorption and solar-light-driven photocatalytic reduction. Applied Catalysis B: Environmental, 2018, 231, 11-22.	10.8	128
60	Effects of Synthesis Conditions on Characteristics of Ni/Fe Nanoparticles and Their Application for Degradation of Decabrominated Diphenyl Ether. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	2
61	Application of nanotechnologies for removing pharmaceutically active compounds from water: development and future trends. Environmental Science: Nano, 2018, 5, 27-47.	2.2	211
62	Study of residual oil in Bay Jimmy sediment 5 years after the Deepwater Horizon oil spill: Persistence of sediment retained oil hydrocarbons and effect of dispersants on desorption. Science of the Total Environment, 2018, 618, 1244-1253.	3.9	46
63	Hydrothermal synthesis of graphene grafted titania/titanate nanosheets for photocatalytic degradation of 4-chlorophenol: Solar-light-driven photocatalytic activity and computational chemistry analysis. Chemical Engineering Journal, 2018, 331, 685-694.	6.6	75
64	Reduction of nitrobenzene in aqueous and soil phases using carboxymethyl cellulose stabilized zero-valent iron nanoparticles. Chemical Engineering Journal, 2018, 332, 227-236.	6.6	48
65	Photocatalytic degradation of phenanthrene by graphite oxide-TiO2-Sr(OH)2/SrCO3 nanocomposite under solar irradiation: Effects of water quality parameters and predictive modeling. Chemical Engineering Journal, 2018, 335, 290-300.	6.6	87
66	Effects of starch-coating of magnetite nanoparticles on cellular uptake, toxicity and gene expression profiles in adult zebrafish. Science of the Total Environment, 2018, 622-623, 930-941.	3.9	40
67	Fractional distribution of thallium in paddy soil and its bioavailability to rice. Ecotoxicology and Environmental Safety, 2018, 148, 311-317.	2.9	26
68	An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade. Water Research, 2018, 147, 440-460.	5.3	323
69	Toxicity and Transcriptome Sequencing (RNA-seq) Analyses of Adult Zebrafish in Response to Exposure Carboxymethyl Cellulose Stabilized Iron Sulfide Nanoparticles. Scientific Reports, 2018, 8, 8083.	1.6	44
70	Degradation of petroleum hydrocarbons in seawater by simulated surface-level atmospheric ozone: Reaction kinetics and effect of oil dispersant. Marine Pollution Bulletin, 2018, 135, 427-440.	2.3	49
71	Adsorption of myo-inositol hexakisphosphate in water using recycled water treatment residual. Environmental Science and Pollution Research, 2018, 25, 29593-29604.	2.7	8
72	Effects of long-lasting nitrogen and organic shock loadings on an engineered biofilter treating matured landfill leachate. Journal of Hazardous Materials, 2018, 360, 536-543.	6.5	8

#	Article	IF	CITATIONS
73	Transport of stabilized iron nanoparticles in porous media: Effects of surface and solution chemistry and role of adsorption. Journal of Hazardous Materials, 2017, 322, 284-291.	6.5	63
74	Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: A review. Journal of Hazardous Materials, 2017, 322, 29-47.	6.5	103
75	Effects of oil dispersant on ozone oxidation of phenanthrene and pyrene in marine water. Chemosphere, 2017, 172, 468-475.	4.2	12
76	In-situ degradation of soil-sorbed 17β-estradiol using carboxymethyl cellulose stabilized manganese oxide nanoparticles: Column studies. Environmental Pollution, 2017, 223, 238-246.	3.7	20
77	Natural organic matter resistant powder activated charcoal supported titanate nanotubes for adsorption of Pb(II). Chemical Engineering Journal, 2017, 315, 191-200.	6.6	63
78	Reusable Platinum-Deposited Anatase/Hexa-Titanate Nanotubes: Roles of Reduced and Oxidized Platinum on Enhanced Solar-Light-Driven Photocatalytic Activity. ACS Sustainable Chemistry and Engineering, 2017, 5, 547-555.	3.2	35
79	Reductive immobilization of pertechnetate in soil and groundwater using synthetic pyrite nanoparticles. Chemosphere, 2017, 174, 456-465.	4.2	33
80	Nanoscale zero-valent iron/persulfate enhanced upflow anaerobic sludge blanket reactor for dye removal: Insight into microbial metabolism and microbial community. Scientific Reports, 2017, 7, 44626.	1.6	18
81	Transport of multi-walled carbon nanotubes stabilized by carboxymethyl cellulose and starch in saturated porous media: Influences of electrolyte, clay and humic acid. Science of the Total Environment, 2017, 599-600, 188-197.	3.9	23
82	Catalytic hydrodechlorination of triclosan using a new class of anion-exchange-resin supported palladium catalysts. Water Research, 2017, 120, 199-210.	5.3	45
83	Effects of oil dispersants on photodegradation of parent and alkylated anthracene in seawater. Environmental Pollution, 2017, 229, 272-280.	3.7	22
84	Enhanced Adsorption of 2,4-Dichlorophenol by Nanoscale Zero-Valent Iron Loaded on Bentonite and Modified with a Cationic Surfactant. Industrial & Engineering Chemistry Research, 2017, 56, 191-197.	1.8	17
85	Mechanistic investigation into sunlight-facilitated photodegradation of pyrene in seawater with oil dispersants. Marine Pollution Bulletin, 2017, 114, 751-758.	2.3	25
86	Effects of oil dispersants on settling of marine sediment particles and particle-facilitated distribution and transport of oil components. Marine Pollution Bulletin, 2017, 114, 408-418.	2.3	44
87	The effects of manganese oxide octahedral molecular sieve chitosan microspheres on sludge bacterial community structures during sewage biological treatment. Scientific Reports, 2016, 6, 37518.	1.6	12
88	Ageing decreases the phytotoxicity of zero-valent iron nanoparticles in soil cultivated with Oryza sativa. Ecotoxicology, 2016, 25, 1202-1210.	1.1	26
89	Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil. Environmental Pollution, 2016, 214, 94-100.	3.7	245
90	Removal of aqueous perfluorooctanoic acid (PFOA) using starch-stabilized magnetite nanoparticles. Science of the Total Environment, 2016, 562, 191-200.	3.9	62

#	Article	IF	CITATIONS
91	An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Research, 2016, 100, 245-266.	5.3	530
92	Dispersion, sorption and photodegradation of petroleum hydrocarbons in dispersant-seawater-sediment systems. Marine Pollution Bulletin, 2016, 109, 526-538.	2.3	39
93	In situ remediation and phytotoxicity assessment of lead-contaminated soil by biochar-supported nHAP. Journal of Environmental Management, 2016, 182, 247-251.	3.8	34
94	Aggregation and stabilization of multiwalled carbon nanotubes in aqueous suspensions: influences of carboxymethyl cellulose, starch and humic acid. RSC Advances, 2016, 6, 67260-67270.	1.7	21
95	High-Capacity and Photoregenerable Composite Material for Efficient Adsorption and Degradation of Phenanthrene in Water. Environmental Science & Technology, 2016, 50, 11174-11183.	4.6	79
96	Reductive Removal of Selenate in Water Using Stabilized Zero-Valent Iron Nanoparticles. Water Environment Research, 2016, 88, 694-703.	1.3	8
97	Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles. Journal of Hazardous Materials, 2016, 318, 533-540.	6.5	229
98	A surface tension based method for measuring oil dispersant concentration in seawater. Marine Pollution Bulletin, 2016, 109, 49-54.	2.3	18
99	Remediation of lead contaminated soil by biochar-supported nano-hydroxyapatite. Ecotoxicology and Environmental Safety, 2016, 132, 224-230.	2.9	112
100	A new type of cobalt-deposited titanate nanotubes for enhanced photocatalytic degradation of phenanthrene. Applied Catalysis B: Environmental, 2016, 187, 134-143.	10.8	128
101	Adsorption of U(VI) by multilayer titanate nanotubes: Effects of inorganic cations, carbonate and natural organic matter. Chemical Engineering Journal, 2016, 286, 427-435.	6.6	156
102	Application of iron sulfide particles for groundwater and soil remediation: A review. Water Research, 2016, 89, 309-320.	5.3	292
103	Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation. Environmental Pollution, 2016, 210, 338-345.	3.7	88
104	Controlling phosphate releasing from poultry litter using stabilized Fe–Mn binary oxide nanoparticles. Science of the Total Environment, 2016, 542, 1020-1029.	3.9	19
105	Environmental applications and implications of nanotechnologies. Frontiers of Environmental Science and Engineering, 2015, 9, 745-745.	3.3	2
106	In Situ Immobilization of Arsenic in Water and Soil Using Polysaccharide Stabilized Iron Manganese Binary Oxide Nanoparticles. ACS Symposium Series, 2015, , 155-168.	0.5	2
107	Reductive Immobilization of Rhenium in Soil and Groundwater Using Pyrite Nanoparticles. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	12
108	Degradation of aqueous and soil-sorbed estradiol using a new class of stabilized manganese oxide nanoparticles. Water Research, 2015, 70, 288-299.	5.3	56

#	Article	IF	CITATIONS
109	Immobilization of selenite in soil and groundwater using stabilized Fe–Mn binary oxide nanoparticles. Water Research, 2015, 70, 485-494.	5.3	50
110	Catalytic activity of noble metal nanoparticles toward hydrodechlorination: influence of catalyst electronic structure and nature of adsorption. Frontiers of Environmental Science and Engineering, 2015, 9, 888-896.	3.3	6
111	Effects of oil dispersants on photodegradation of pyrene in marine water. Journal of Hazardous Materials, 2015, 287, 142-150.	6.5	28
112	Effects of oil dispersant on solubilization, sorption and desorption of polycyclic aromatic hydrocarbons in sediment–seawater systems. Marine Pollution Bulletin, 2015, 92, 160-169.	2.3	43
113	A new technique for determining critical micelle concentrations of surfactants and oil dispersants via UV absorbance of pyrene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484, 1-8.	2.3	46
114	Effect of operating factors on the contaminants removal of a soil filter: multi-soil-layering system. Environmental Earth Sciences, 2015, 74, 2679-2686.	1.3	18
115	Rural domestic waste management in Zhejiang Province, China: Characteristics, current practices, and an improved strategy. Journal of the Air and Waste Management Association, 2015, 65, 721-731.	0.9	11
116	Effects of octahedral molecular sieve on treatment performance, microbial metabolism, and microbial community in expanded granular sludge bed reactor. Water Research, 2015, 87, 127-136.	5.3	57
117	Application of Stabilized Nanoparticles for In Situ Remediation of Metal-Contaminated Soil and Groundwater: a Critical Review. Current Pollution Reports, 2015, 1, 280-291.	3.1	78
118	Effects of Oil and Dispersant on Formation of Marine Oil Snow and Transport of Oil Hydrocarbons. Environmental Science & Technology, 2014, 48, 14392-14399.	4.6	88
119	Remediation of polybrominated diphenyl ethers in soil using Ni/Fe bimetallic nanoparticles: Influencing factors, kinetics and mechanism. Science of the Total Environment, 2014, 485-486, 363-370.	3.9	86
120	Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors. Journal of Hazardous Materials, 2014, 270, 102-109.	6.5	359
121	Molecular docking and molecular dynamics studies on the interactions of hydroxylated polybrominated diphenyl ethers to estrogen receptor alpha. Ecotoxicology and Environmental Safety, 2014, 101, 83-89.	2.9	16
122	A review of oil, dispersed oil and sediment interactions in the aquatic environment: Influence on the fate, transport and remediation of oil spills. Marine Pollution Bulletin, 2014, 79, 16-33.	2.3	291
123	Immobilization of Mercury by Carboxymethyl Cellulose Stabilized Iron Sulfide Nanoparticles: Reaction Mechanisms and Effects of Stabilizer and Water Chemistry. Environmental Science & Technology, 2014, 48, 3986-3994.	4.6	212
124	Effects of oil dispersant and oil on sorption and desorption of phenanthrene with Gulf Coast marine sediments. Environmental Pollution, 2014, 185, 240-249.	3.7	43
125	Immobilization of arsenate in a sandy loam soil using starch-stabilized magnetite nanoparticles. Journal of Hazardous Materials, 2014, 271, 16-23.	6.5	56
126	Catalytic reduction of aqueous nitrates by metal supported catalysts on Al particles. Chemical Engineering Journal, 2014, 254, 410-417.	6.6	56

#	Article	IF	CITATIONS
127	Reductive immobilization of perrhenate in soil and groundwater using starch-stabilized ZVI nanoparticles. Science Bulletin, 2013, 58, 275-281.	1.7	34
128	Catalytic hydrodechlorination of trichloroethylene in water with supported CMC-stabilized palladium nanoparticles. Water Research, 2013, 47, 3706-3715.	5.3	50
129	Removal and Immobilization of Arsenic in Water and Soil Using Polysaccharide-Modified Magnetite Nanoparticles. , 2013, , 285-298.		4
130	Kinetics of Reductive Immobilization of Rhenium in Soil and Groundwater Using Zero Valent Iron Nanoparticles. Environmental Engineering Science, 2013, 30, 713-718.	0.8	14
131	Synthesis and characterization of a new class of stabilized apatite nanoparticles and applying the particles to in situ Pb immobilization in a fire-range soil. Chemosphere, 2013, 91, 594-601.	4.2	68
132	In Situ Immobilization of Mercury in Water, Soil, and Sediment Using Carboxymethyl Cellulose Stabilized Iron Sulfide Nanoparticles. ACS Symposium Series, 2013, , 61-77.	0.5	6
133	In Situ Dechlorination in Soil and Groundwater Using Stabilized Zero-Valent Iron Nanoparticles: Some Field Experience on Effectiveness and Limitations. ACS Symposium Series, 2013, , 79-96.	0.5	4
134	Sorption and retardation of strontium in saturated Chinese loess: experimental results and model analysis. Journal of Environmental Radioactivity, 2013, 116, 19-27.	0.9	24
135	Synthesis and characterization of supported polysugar-stabilized palladium nanoparticle catalysts for enhanced hydrodechlorination of trichloroethylene. Nanotechnology, 2012, 23, 294004.	1.3	20
136	Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles. Nanotechnology, 2012, 23, 294007.	1.3	125
137	Effects of Stabilizers and Water Chemistry on Arsenate Sorption by Polysaccharide-Stabilized Magnetite Nanoparticles. Industrial & Engineering Chemistry Research, 2012, 51, 2407-2418.	1.8	51
138	Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe–Mn oxide nanoparticles. Journal of Hazardous Materials, 2012, 211-212, 332-341.	6.5	133
139	Removal of arsenic(V) from spent ion exchange brine using a new class of starch-bridged magnetite nanoparticles. Water Research, 2011, 45, 1961-1972.	5.3	184
140	Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: Effects of sorption, surfactants, and natural organic matter. Water Research, 2011, 45, 2401-2414.	5.3	180
141	XAFS study of starch-stabilized magnetite nanoparticles and surface speciation of arsenate. Environmental Pollution, 2011, 159, 3509-3514.	3.7	48
142	Ozonation of Cationic Red X-GRL in aqueous solution: Kinetics and modeling. Journal of Hazardous Materials, 2011, 187, 526-533.	6.5	20
143	Oxidation of Cationic Red X-GRL by ozonation combined with UV radiation in aqueous solution: Degradation, kinetics, and modeling. Chemical Engineering Journal, 2011, 171, 628-639.	6.6	19
144	Immobilization of arsenic in soils by stabilized nanoscale zero-valent iron, iron sulfide (FeS), and magnetite (Fe3O4) particles. Science Bulletin, 2010, 55, 365-372.	1.7	99

#	Article	IF	CITATIONS
145	Laboratory Investigation Into Factors Affecting Performance of Capillary Barrier System in Unsaturated Soil. Water, Air, and Soil Pollution, 2010, 206, 295-306.	1.1	18
146	In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer. Journal of Contaminant Hydrology, 2010, 116, 35-46.	1.6	125
147	Immobilization of non-point phosphorus using stabilized magnetite nanoparticles with enhanced transportability and reactivity in soils. Environmental Pollution, 2010, 158, 35-40.	3.7	48
148	Synthesis and characterization of a new class of polymeric ligand exchangers for selective removal of arsenate from drinking water. Reactive and Functional Polymers, 2010, 70, 497-507.	2.0	38
149	Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Research, 2010, 44, 2360-2370.	5.3	368
150	Rapid and controlled transformation of nitrate in water and brine by stabilized iron nanoparticles. Journal of Nanoparticle Research, 2009, 11, 807-819.	0.8	46
151	Two-dimensional numerical modeling of 90Sr transport in an unsaturated Chinese loess under artificial sprinkling. Journal of Environmental Radioactivity, 2009, 100, 422-428.	0.9	5
152	Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: Column experiments and modeling. Journal of Colloid and Interface Science, 2009, 334, 96-102.	5.0	245
153	Effect of cationic and anionic surfactants on the sorption and desorption of perfluorooctane sulfonate (PFOS) on natural sediments. Environmental Pollution, 2009, 157, 325-330.	3.7	139
154	Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles. Water Research, 2009, 43, 5171-5179.	5.3	163
155	One-Step "Green―Synthesis of Pd Nanoparticles of Controlled Size and Their Catalytic Activity for Trichloroethene Hydrodechlorination. Industrial & Engineering Chemistry Research, 2009, 48, 6550-6557.	1.8	64
156	Hydrodechlorination of trichloroethene using stabilized Fe-Pd nanoparticles: Reaction mechanism and effects of stabilizers, catalysts and reaction conditions. Applied Catalysis B: Environmental, 2008, 84, 533-540.	10.8	215
157	Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: Effects of catalyst and stabilizer. Chemosphere, 2008, 70, 418-425.	4.2	145
158	Polysugar-Stabilized Pd Nanoparticles Exhibiting High Catalytic Activities for Hydrodechlorination of Environmentally Deleterious Trichloroethylene. Langmuir, 2008, 24, 328-336.	1.6	85
159	Response to Comment on "Manipulating the Size and Dispersibility of Zerovalent Iron Nanoparticles by Use of Carboxymethyl Cellulose Stabilizers― Environmental Science & Technology, 2008, 42, 3480-3480.	4.6	6
160	A Comparison of Metal-Loaded DOW3N Ion Exchangers for Removal of Perchlorate from Water. Separation Science and Technology, 2008, 43, 2343-2362.	1.3	5
161	Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Research, 2007, 41, 2101-2108.	5.3	296
162	Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles. Water Research, 2007, 41, 2491-2502.	5.3	171

#	Article	IF	CITATIONS
163	Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles. Water Research, 2007, 41, 3497-3505.	5.3	190
164	In situ immobilization of Cu(II) in soils using a new class of iron phosphate nanoparticles. Chemosphere, 2007, 68, 1867-1876.	4.2	108
165	Sorption and Desorption of Perchlorate with Various Classes of Ion Exchangers:  A Comparative Study. Industrial & Engineering Chemistry Research, 2007, 46, 9213-9222.	1.8	55
166	Stabilization of Feâ^'Pd Nanoparticles with Sodium Carboxymethyl Cellulose for Enhanced Transport and Dechlorination of Trichloroethylene in Soil and Groundwater. Industrial & Engineering Chemistry Research, 2007, 46, 29-34.	1.8	586
167	Manipulating the Size and Dispersibility of Zerovalent Iron Nanoparticles by Use of Carboxymethyl Cellulose Stabilizers. Environmental Science & Technology, 2007, 41, 6216-6221.	4.6	510
168	Fate and Transport of Copper Applied in Channel Catfish Ponds. Water, Air, and Soil Pollution, 2006, 176, 139-162.	1.1	25
169	Removal of Perchlorate from Contaminated Water Using a Regenerable Polymeric Ligand Exchanger. Separation Science and Technology, 2006, 41, 2555-2574.	1.3	17
170	Preparation and Characterization of a New Class of Starch-Stabilized Bimetallic Nanoparticles for Degradation of Chlorinated Hydrocarbons in Water. Environmental Science & Technology, 2005, 39, 3314-3320.	4.6	736
171	Selective removal of arsenate from drinking water using a polymeric ligand exchanger. Water Research, 2005, 39, 4993-5004.	5.3	130
172	MODEL-AIDED CHARACTERIZATION OF TENAX®-TA FOR AROMATIC COMPOUND UPTAKE FROM WATER. Environmental Toxicology and Chemistry, 2004, 23, 1592.	2.2	41
173	Application of the dualâ€mode model for predicting competitive sorption equilibria and rates of polycyclic aromatic hydrocarbons in estuarine sediment suspensions. Environmental Toxicology and Chemistry, 2002, 21, 2276-2282.	2.2	26
174	Dual-mode modeling of competitive and concentration-dependent sorption and desorption kinetics of polycyclic aromatic hydrocarbons in soils. Water Resources Research, 2001, 37, 2205-2212.	1.7	56
175	Ligand Separation with a Copper(II)-Loaded Polymeric Ligand Exchanger. Industrial & Engineering Chemistry Research, 2000, 39, 455-462.	1.8	57
176	Ultimate removal of phosphate from wastewater using a new class of polymeric ion exchangers. Water Research, 1998, 32, 1613-1625.	5.3	242
177	Selective Removal of Cr(VI) Oxyanions with a New Anion Exchanger. Industrial & Engineering Chemistry Research, 1998, 37, 4383-4387.	1.8	92
178	In-Situ Oxidative Degradation of Emerging Contaminants in Soil and Groundwater Using a New Class of Stabilized MnO2 Nanoparticles. Advances in Environmental Engineering and Green Technologies Book Series, 0, , 112-136.	0.3	1