
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1030474/publications.pdf Version: 2024-02-01

YONG-HYFOR LEF

#	Article	IF	CITATIONS
1	Nitrile Electrolyte Strategy for 4.9 <scp>V lass Lithiumâ€Metal</scp> Batteries Operating in Flame. Energy and Environmental Materials, 2023, 6, .	7.3	10
2	Anionâ€Rectifying Polymeric Single Lithiumâ€lon Conductors. Advanced Functional Materials, 2022, 32, 2107753.	7.8	25
3	30 Li ⁺ â€Accommodating Covalent Organic Frameworks as Ultralong Cyclable Highâ€Capacity Liâ€Ion Battery Electrodes. Advanced Functional Materials, 2022, 32, 2108798.	7.8	59
4	Guanineâ€Based Gâ€Quadruplexes Templated by Various Cations toward Potential Use as Singleâ€Ion Conductors. ChemSusChem, 2022, 15, .	3.6	1
5	Fibrous skeletonâ€framed, flexible highâ€energyâ€density quasiâ€solidâ€state lithium metal batteries. , 2022, 1,		21
6	Battery technology and sustainable energy storage and conversion as a new energy resource replacing fossil fuels. , 2022, 1, .		10
7	On-demand solid-state artistic ultrahigh areal energy density microsupercapacitors. Energy Storage Materials, 2022, 47, 569-578.	9.5	3
8	Crystalline Porphyrazineâ€Linked Fused Aromatic Networks with High Proton Conductivity. Angewandte Chemie, 2022, 134, .	1.6	1
9	Crystalline Porphyrazineâ€Linked Fused Aromatic Networks with High Proton Conductivity. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
10	A microgrid-patterned silicon electrode as an electroactive lithium host. Energy and Environmental Science, 2022, 15, 2581-2590.	15.6	12
11	Light-triggered autonomous shape-reconfigurable and locomotive rechargeable power sources. Materials Today, 2022, 55, 56-65.	8.3	6
12	Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries. Nature Communications, 2022, 13, 2541.	5.8	22
13	Electrode-customized separator membranes based on self-assembled chiral nematic liquid crystalline cellulose nanocrystals as a natural material strategy for sustainable Li-metal batteries. Energy Storage Materials, 2022, 50, 783-791.	9.5	6
14	Why Celluloseâ€Based Electrochemical Energy Storage Devices?. Advanced Materials, 2021, 33, e2000892.	11.1	125
15	Aqueous eutectic lithium-ion electrolytes for wide-temperature operation. Energy Storage Materials, 2021, 36, 222-228.	9.5	19
16	Ultrahighâ€Energyâ€Density Flexible Lithiumâ€Metal Full Cells based on Conductive Fibrous Skeletons. Advanced Energy Materials, 2021, 11, 2100531.	10.2	20
17	A Chemically Selfâ€Charging Flexible Solidâ€State Zincâ€Ion Battery Based on VO ₂ Cathode and Polyacrylamide–Chitin Nanofiber Hydrogel Electrolyte. Advanced Energy Materials, 2021, 11, 2003902.	10.2	77
18	Conductive Fibrous Skeletons: Ultrahighâ€Energyâ€Density Flexible Lithiumâ€Metal Full Cells based on Conductive Fibrous Skeletons (Adv. Energy Mater. 24/2021). Advanced Energy Materials, 2021, 11, 2170092.	10.2	2

#	Article	IF	CITATIONS
19	A new high-voltage calcium intercalation host for ultra-stable and high-power calcium rechargeable batteries. Nature Communications, 2021, 12, 3369.	5.8	59
20	Waterâ€Repellent Ionic Liquid Skinny Gels Customized for Aqueous Znâ€Ion Battery Anodes. Advanced Functional Materials, 2021, 31, 2103850.	7.8	63
21	Zincâ€Ion Batteries: A Chemically Selfâ€Charging Flexible Solidâ€State Zincâ€Ion Battery Based on VO ₂ Cathode and Polyacrylamide–Chitin Nanofiber Hydrogel Electrolyte (Adv. Energy) Tj ETQq1 1	0170824314	rgBT /Overl
22	Singleâ€Ion Conducting Soft Electrolytes for Semiâ€Solid Lithium Metal Batteries Enabling Cell Fabrication and Operation under Ambient Conditions. Advanced Energy Materials, 2021, 11, 2101813.	10.2	26
23	Liquidâ€Based Janus Electrolyte for Sustainable Redox Mediation in Lithium–Oxygen Batteries. Advanced Energy Materials, 2021, 11, 2102096.	10.2	9
24	Waterâ€Repellent Ionic Liquid Skinny Gels Customized for Aqueous Znâ€ion Battery Anodes (Adv. Funct.) Tj ETQ	q0,00 rgB	T "Overlock
25	Expanding cellulose. Nature Energy, 2021, 6, 949-950.	19.8	6
26	Singleâ€lon Conducting Soft Electrolytes for Semiâ€Solid Lithium Metal Batteries Enabling Cell Fabrication and Operation under Ambient Conditions (Adv. Energy Mater. 38/2021). Advanced Energy Materials, 2021, 11, .	10.2	2
27	Printed solid-state electrolytes for form factor-free Li-metal batteries. Current Opinion in Electrochemistry, 2021, , 100889.	2.5	0
28	Flexible, Electrically Conductive, Nanostructured, Asymmetric Aerogel Films for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 59174-59184.	4.0	5
29	Scalable and safer printed Zn//MnO2 planar micro-batteries for smart electronics. National Science Review, 2020, 7, 5-6.	4.6	10
30	Covalent organic framework-based ultrathin crystalline porous film: manipulating uniformity of fluoride distribution for stabilizing lithium metal anode. Journal of Materials Chemistry A, 2020, 8, 3459-3467.	5.2	75
31	Cellulose Nanofiber/Carbon Nanotubeâ€Based Bicontinuous Ion/Electron Conduction Networks for Highâ€Performance Aqueous Znâ€Ion Batteries. Small, 2020, 16, e2002837.	5.2	25
32	A single-ion conducting covalent organic framework for aqueous rechargeable Zn-ion batteries. Chemical Science, 2020, 11, 11692-11698.	3.7	51
33	A stretchable solid-state zinc ion battery based on a cellulose nanofiber–polyacrylamide hydrogel electrolyte and a Mg _{0.23} V ₂ O ₅ ·1.0H ₂ O cathode. Journal of Materials Chemistry A, 2020, 8, 18327-18337.	5.2	66
34	Voltage-tunable portable power supplies based on tailored integration of modularized silicon photovoltaics and printed bipolar lithium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 16291-16301.	5.2	2
35	Standâ€Alone Intrinsically Stretchable Electronic Device Platform Powered by Stretchable Rechargeable Battery. Advanced Functional Materials, 2020, 30, 2003608.	7.8	36
36	Nanofibrous Conductive Binders Based on DNA-Wrapped Carbon Nanotubes for Lithium Battery Electrodes. IScience, 2020, 23, 101739.	1.9	3

#	Article	IF	CITATIONS
37	Aqueous Znâ€ion Batteries: Cellulose Nanofiber/Carbon Nanotubeâ€Based Bicontinuous Ion/Electron Conduction Networks for Highâ€Performance Aqueous Znâ€ion Batteries (Small 44/2020). Small, 2020, 16, 2070239.	5.2	0
38	Integration of Transparent Supercapacitors and Electrodes Using Nanostructured Metallic Glass Films for Wirelessly Rechargeable, Skin Heat Patches. Nano Letters, 2020, 20, 4872-4881.	4.5	56
39	Transparent Supercapacitors: From Optical Theories to Optoelectronics Applications. Energy and Environmental Materials, 2020, 3, 265-285.	7.3	12
40	Ultrahigh areal number density solid-state on-chip microsupercapacitors via electrohydrodynamic jet printing. Science Advances, 2020, 6, eaaz1692.	4.7	72
41	Thin and Flexible Solid Electrolyte Membranes with Ultrahigh Thermal Stability Derived from Solution-Processable Li Argyrodites for All-Solid-State Li-Ion Batteries. ACS Energy Letters, 2020, 5, 718-727.	8.8	126
42	Galvanically Replaced, Singleâ€Bodied Lithiumâ€lon Battery Fabric Electrodes. Advanced Functional Materials, 2020, 30, 1908633.	7.8	11
43	Ecofriendly Chemical Activation of Overlithiated Layered Oxides by DNAâ€Wrapped Carbon Nanotubes. Advanced Energy Materials, 2020, 10, 1903658.	10.2	5
44	Nonflammable Lithium Metal Full Cells with Ultra-high Energy Density Based on Coordinated Carbonate Electrolytes. IScience, 2020, 23, 100844.	1.9	58
45	Printable Solid Electrolyte Interphase Mimic for Antioxidative Lithium Metal Electrodes. Advanced Functional Materials, 2020, 30, 2000792.	7.8	16
46	Printed Built-In Power Sources. Matter, 2020, 2, 345-359.	5.0	16
47	Form factor-free, printed power sources. Energy Storage Materials, 2020, 29, 92-112.	9.5	19
48	Lignocellulosics as a Green Material Opportunity for Energy Storage Systems. , 2020, , 297-343.		0
49	Nanocarbons in Li-Ion Batteries. Nanostructure Science and Technology, 2019, , 419-453.	0.1	0
50	Nanomat Li–S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility. Energy and Environmental Science, 2019, 12, 177-186.	15.6	138
51	Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes. Energy Storage Materials, 2019, 22, 346-375.	9.5	225
52	Biomimetic Superoxide Disproportionation Catalyst for Anti-Aging Lithium–Oxygen Batteries. ACS Nano, 2019, 13, 9190-9197.	7.3	29
53	Woodâ€Derived Nanofibrillated Cellulose Hydrogel Filters for Fast and Efficient Separation of Nanoparticles. Advanced Sustainable Systems, 2019, 3, 1900063.	2.7	10
54	Allâ€Solidâ€State Printed Bipolar Li–S Batteries. Advanced Energy Materials, 2019, 9, 1901841.	10.2	45

#	Article	IF	CITATIONS
55	Monolithic heteronanomat paper air cathodes toward origami-foldable/rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2019, 7, 24231-24238.	5.2	27
56	DNA-directed amphiphilic self-assembly as a chemifunctional/multiscale-structuring strategy for high-performance Li–S batteries. Journal of Materials Chemistry A, 2019, 7, 4084-4092.	5.2	3
57	Revisiting polymeric single lithium-ion conductors as an organic route for all-solid-state lithium ion and metal batteries. Journal of Materials Chemistry A, 2019, 7, 1917-1935.	5.2	103
58	Antioxidative Lithium Reservoir Based on Interstitial Channels of Carbon Nanotube Bundles. Nano Letters, 2019, 19, 5879-5884.	4.5	8
59	Platform for wireless pressure sensing with built-in battery and instant visualization. Nano Energy, 2019, 62, 230-238.	8.2	43
60	Solvent-Free, Single Lithium-Ion Conducting Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 5880-5885.	6.6	284
61	Carbonâ€Nanotube ored Cobalt Porphyrin as a 1D Nanohybrid Strategy for Highâ€Performance Lithiumâ€Ion Battery Anodes. Advanced Functional Materials, 2019, 29, 1806937.	7.8	35
62	Heteromat-framed metal-organic coordination polymer anodes for high-performance lithium-ion batteries. Energy Storage Materials, 2019, 19, 130-136.	9.5	21
63	Printing of wirelessly rechargeable solid-state supercapacitors for soft, smart contact lenses with continuous operations. Science Advances, 2019, 5, eaay0764.	4.7	117
64	Monolithic heterojunction quasi-solid-state battery electrolytes based on thermodynamically immiscible dual phases. Energy and Environmental Science, 2019, 12, 559-565.	15.6	27
65	Nanocellulose for Energy Storage Systems: Beyond the Limits of Synthetic Materials. Advanced Materials, 2019, 31, e1804826.	11.1	181
66	Allâ€Handâ€Drawn Zn–Air Batteries: Toward Userâ€Customized Onâ€theâ€Fly Power Sources. Advanced Sustainable Systems, 2018, 2, 1700132.	2.7	9
67	Wearable Supercapacitors Printed on Garments. Advanced Functional Materials, 2018, 28, 1705571.	7.8	62
68	Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chemical Society Reviews, 2018, 47, 2837-2872.	18.7	586
69	Wearable Electronics: Wearable Supercapacitors Printed on Garments (Adv. Funct. Mater. 11/2018). Advanced Functional Materials, 2018, 28, 1870074.	7.8	13
70	Flexible/shape-versatile, bipolar all-solid-state lithium-ion batteries prepared by multistage printing. Energy and Environmental Science, 2018, 11, 321-330.	15.6	141
71	Current Status and Challenges in Printed Batteries: Toward Form Factor-Free, Monolithic Integrated Power Sources. ACS Energy Letters, 2018, 3, 220-236.	8.8	139
72	Reversible thixotropic gel electrolytes for safer and shape-versatile lithium-ion batteries. Journal of Power Sources, 2018, 401, 126-134.	4.0	15

#	Article	IF	CITATIONS
73	Spiderwebâ€Mimicking Anionâ€Exchanging Separators for Li–S Batteries. Advanced Functional Materials, 2018, 28, 1801422.	7.8	26
74	Flexible/Rechargeable Zn–Air Batteries Based on Multifunctional Heteronanomat Architecture. ACS Applied Materials & Interfaces, 2018, 10, 22210-22217.	4.0	51
75	Monolithically integrated, photo-rechargeable portable power sources based on miniaturized Si solar cells and printed solid-state lithium-ion batteries. Energy and Environmental Science, 2017, 10, 931-940.	15.6	111
76	Beyond Slurry-Cast Supercapacitor Electrodes: PAN/MWNT Heteromat-Mediated Ultrahigh Capacitance Electrode Sheets. Scientific Reports, 2017, 7, 41708.	1.6	5
77	Beyond flexible batteries: aesthetically versatile, printed rechargeable power sources for smart electronics. , 2017, , .		0
78	Coffee-Driven Green Activation of Cellulose and Its Use for All-Paper Flexible Supercapacitors. ACS Applied Materials & amp; Interfaces, 2017, 9, 22568-22577.	4.0	38
79	Polysulfide-Breathing/Dual-Conductive, Heterolayered Battery Separator Membranes Based on 0D/1D Mingled Nanomaterial Composite Mats. Nano Letters, 2017, 17, 2220-2228.	4.5	36
80	One-pot surface engineering of battery electrode materials with metallic SWCNT-enriched, ivy-like conductive nanonets. Journal of Materials Chemistry A, 2017, 5, 12103-12112.	5.2	7
81	Allâ€Nanomat Lithiumâ€Ion Batteries: A New Cell Architecture Platform for Ultrahigh Energy Density and Mechanical Flexibility. Advanced Energy Materials, 2017, 7, 1701099.	10.2	34
82	Revisiting Surface Modification of Graphite: Dual‣ayer Coating for Highâ€Performance Lithium Battery Anode Materials. Chemistry - an Asian Journal, 2016, 11, 1711-1717.	1.7	20
83	1D Building Blocksâ€Intermingled Heteronanomats as a Platform Architecture For Highâ€Performance Ultrahighâ€Capacity Lithiumâ€Ion Battery Cathodes. Advanced Energy Materials, 2016, 6, 1501594.	10.2	35
84	Functionalized Nanocellulose-Integrated Heterolayered Nanomats toward Smart Battery Separators. Nano Letters, 2016, 16, 5533-5541.	4.5	96
85	Toward Ultrahighâ€Capacity V ₂ O ₅ Lithiumâ€ion Battery Cathodes via Oneâ€Pot Synthetic Route from Precursors to Electrode Sheets. Advanced Materials Interfaces, 2016, 3, 1600173.	1.9	16
86	COF-Net on CNT-Net as a Molecularly Designed, Hierarchical Porous Chemical Trap for Polysulfides in Lithium–Sulfur Batteries. Nano Letters, 2016, 16, 3292-3300.	4.5	216
87	Molecularly designed, dual-doped mesoporous carbon/SWCNT nanoshields for lithium battery electrode materials. Journal of Materials Chemistry A, 2016, 4, 14996-15005.	5.2	1
88	Janusâ€Faced, Dual onductive/Chemically Active Battery Separator Membranes. Advanced Functional Materials, 2016, 26, 7074-7083.	7.8	67
89	Separator Membranes: Janusâ€Faced, Dual onductive/Chemically Active Battery Separator Membranes (Adv. Funct. Mater. 39/2016). Advanced Functional Materials, 2016, 26, 7195-7195.	7.8	0
90	All-inkjet-printed, solid-state flexible supercapacitors on paper. Energy and Environmental Science, 2016, 9, 2812-2821.	15.6	377

#	Article	IF	CITATIONS
91	An effective coupling of nanostructured Si and gel polymer electrolytes for high-performance lithium-ion battery anodes. RSC Advances, 2016, 6, 6960-6966.	1.7	23
92	Artificially engineered, bicontinuous anion-conducting/-repelling polymeric phases as a selective ion transport channel for rechargeable zinc–air battery separator membranes. Journal of Materials Chemistry A, 2016, 4, 3711-3720.	5.2	80
93	Electrospun polyetherimide nanofiber mat-reinforced, permselective polyvinyl alcohol composite separator membranes: A membrane-driven step closer toward rechargeable zinc–air batteries. Journal of Membrane Science, 2016, 499, 526-537.	4.1	65
94	Multifunctional natural agarose as an alternative material for high-performance rechargeable lithium-ion batteries. Green Chemistry, 2016, 18, 2710-2716.	4.6	39
95	Heteroâ€Nanonet Rechargeable Paper Batteries: Toward Ultrahigh Energy Density and Origami Foldability. Advanced Functional Materials, 2015, 25, 6029-6040.	7.8	111
96	Excellent Compatibility of Solvate Ionic Liquids with Sulfide Solid Electrolytes: Toward Favorable Ionic Contacts in Bulkâ€Type Allâ€Solidâ€State Lithiumâ€Ion Batteries. Advanced Energy Materials, 2015, 5, 1500865.	10.2	134
97	Superlattice Crystals–Mimic, Flexible/Functional Ceramic Membranes: Beyond Polymeric Battery Separators. Advanced Energy Materials, 2015, 5, 1500954.	10.2	45
98	A facile route for growth of CNTs on Si@hard carbon for conductive agent incorporating anodes for lithium-ion batteries. Nanoscale, 2015, 7, 11286-11290.	2.8	19
99	Lithium-Ion Batteries: Excellent Compatibility of Solvate Ionic Liquids with Sulfide Solid Electrolytes: Toward Favorable Ionic Contacts in Bulk-Type All-Solid-State Lithium-Ion Batteries (Adv. Energy Mater.) Tj ETQq1	1 0.7.8 431	4 2 gBT /Over
100	Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation. Science Advances, 2015, 1, e1500101.	4.7	57
101	Dual electrospray-assisted forced blending of thermodynamically immiscible polyelectrolyte mixtures. Journal of Membrane Science, 2015, 481, 28-35.	4.1	12
102	Agarose-biofunctionalized, dual-electrospun heteronanofiber mats: toward metal-ion chelating battery separator membranes. Journal of Materials Chemistry A, 2015, 3, 10687-10692.	5.2	43
103	Printable Solid-State Lithium-Ion Batteries: A New Route toward Shape-Conformable Power Sources with Aesthetic Versatility for Flexible Electronics. Nano Letters, 2015, 15, 5168-5177.	4.5	182
104	Bendable and Thin Sulfide Solid Electrolyte Film: A New Electrolyte Opportunity for Free-Standing and Stackable High-Energy All-Solid-State Lithium-Ion Batteries. Nano Letters, 2015, 15, 3317-3323.	4.5	233
105	Cyclic ultracapacitor for fast-charging and scalable energy storage system. Energy, 2015, 93, 210-219.	4.5	5
106	Enhancing the elevated temperature performance of high voltage LiNi0.5Mn1.5O4 by V doping with in-situ carbon and polyimide encapsulation. Journal of Power Sources, 2015, 298, 379-384.	4.0	9
107	Thin, Deformable, and Safetyâ€Reinforced Plastic Crystal Polymer Electrolytes for Highâ€Performance Flexible Lithiumâ€Ion Batteries. Advanced Functional Materials, 2014, 24, 44-52.	7.8	195
108	Anomalous behavior of proton transport and dimensional stability of sulfonated poly(arylene ether) Tj ETQq0 0 0	rgBT /Ove 4.1	rlock 10 Tf 5 29

morphology. Journal of Membrane Science, 2014, 450, 235-241.

#	Article	IF	CITATIONS
109	Ultrahighâ€Energyâ€Density Lithiumâ€Ion Batteries Based on a Highâ€Capacity Anode and a Highâ€Voltage Cathode with an Electroconductive Nanoparticle Shell. Advanced Energy Materials, 2014, 4, 1301542.	10.2	46
110	Solar Cells: Triple-Layer Structured Composite Separator Membranes with Dual Pore Structures and Improved Interfacial Contact for Sustainable Dye-Sensitized Solar Cells (Adv. Energy Mater. 13/2014). Advanced Energy Materials, 2014, 4, n/a-n/a.	10.2	1
111	A shape-deformable and thermally stable solid-state electrolyte based on a plastic crystal composite polymer electrolyte for flexible/safer lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 10854-10861.	5.2	68
112	Triple‣ayer Structured Composite Separator Membranes with Dual Pore Structures and Improved Interfacial Contact for Sustainable Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1400477.	10.2	12
113	Novel design of ultra-fast Si anodes for Li-ion batteries: crystalline Si@amorphous Si encapsulating hard carbon. Nanoscale, 2014, 6, 10604-10610.	2.8	40
114	Facile surface modification of high-voltage lithium-ion battery cathode materials with electroconductive zinc antimonate colloidal nanoparticles. RSC Advances, 2014, 4, 15630.	1.7	3
115	Heterolayered, One-Dimensional Nanobuilding Block Mat Batteries. Nano Letters, 2014, 14, 5677-5686.	4.5	111
116	Conducting Polymer-Skinned Electroactive Materials of Lithium-Ion Batteries: Ready for Monocomponent Electrodes without Additional Binders and Conductive Agents. ACS Applied Materials & Interfaces, 2014, 6, 12789-12797.	4.0	74
117	Nanoporous polymer scaffold-embedded nonwoven composite separator membranes for high-rate lithium-ion batteries. RSC Advances, 2014, 4, 54312-54321.	1.7	15
118	Inverse Opal-Inspired, Nanoscaffold Battery Separators: A New Membrane Opportunity for High-Performance Energy Storage Systems. Nano Letters, 2014, 14, 4438-4448.	4.5	77
119	Mixed ion/electron-conductive protective soft nanomatter-based conformal surface modification of lithium-ion battery cathode materials. Journal of Power Sources, 2014, 263, 209-216.	4.0	9
120	Flexible Batteries: Thin, Deformable, and Safety-Reinforced Plastic Crystal Polymer Electrolytes for High-Performance Flexible Lithium-Ion Batteries (Adv. Funct. Mater. 1/2014). Advanced Functional Materials, 2014, 24, 172-172.	7.8	5
121	Multifunctional semi-interpenetrating polymer network-nanoencapsulated cathode materials for high-performance lithium-ion batteries. Scientific Reports, 2014, 4, 4602.	1.6	21
122	Surface engineering of sponge-like silicon particles for high-performance lithium-ion battery anodes. Physical Chemistry Chemical Physics, 2013, 15, 7045.	1.3	23
123	Thickness-tunable polyimide nanoencapsulating layers and their influence on cell performance/thermal stability of high-voltage LiCoO2 cathode materials for lithium-ion batteries. Journal of Power Sources, 2013, 244, 442-449.	4.0	20
124	Polyimide/carbon black composite nanocoating layers as a facile surface modification strategy for high-voltage lithium ion cathode materials. Journal of Materials Chemistry A, 2013, 1, 12441.	5.2	20
125	Imprintable, Bendable, and Shapeâ€Conformable Polymer Electrolytes for Versatileâ€Shaped Lithiumâ€Ion Batteries. Advanced Materials, 2013, 25, 1395-1400.	11.1	183
126	Reduction of heat generation for lithiated graphite by forming a local galvanic cell with Cu3Sn at elevated temperature. Electrochemistry Communications, 2013, 37, 88-90.	2.3	4

#	Article	IF	CITATIONS
127	Direct ultraviolet-assisted conformal coating of nanometer-thick poly(tris(2-(acryloyloxy)ethyl)) Tj ETQq1 1 0.7843 Sources, 2013, 244, 389-394.	814 rgBT / 4.0	Overlock 10 22
128	Direct surface modification of high-voltage LiCoO2 cathodes by UV-cured nanothickness poly(ethylene glycol diacrylate) gel polymer electrolytes. Electrochimica Acta, 2013, 104, 249-254.	2.6	17
129	Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries. Energy and Environmental Science, 2013, 6, 2414.	15.6	235
130	Mechanically compliant and lithium dendrite growth-suppressing composite polymer electrolytes for flexible lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 4949.	5.2	110
131	Highly Flexible, Proton-Conductive Silicate Glass Electrolytes for Medium-Temperature/Low-Humidity Proton Exchange Membrane Fuel Cells. ACS Applied Materials & Interfaces, 2013, 5, 5034-5043.	4.0	38
132	Colloidal silica nanoparticle-assisted structural control of cellulose nanofiber paper separators for lithium-ion batteries. Journal of Power Sources, 2013, 242, 533-540.	4.0	123
133	Compliant polymer network-mediated fabrication of a bendable plastic crystal polymer electrolyte for flexible lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 5224.	5.2	60
134	Ultrathin Polyimide Coating for a Spinel LiNi0.5Mn1.5O4Cathode and Its Superior Lithium Storage Properties under Elevated Temperature Conditions. Journal of the Electrochemical Society, 2013, 160, A1003-A1008.	1.3	42
135	Polymer Electrolytes: Imprintable, Bendable, and Shapeâ€Conformable Polymer Electrolytes for Versatileâ€Shaped Lithiumâ€Ion Batteries (Adv. Mater. 10/2013). Advanced Materials, 2013, 25, 1512-1512.	11.1	1
136	Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 16618.	6.7	266
137	UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries. Energy and Environmental Science, 2012, 5, 6491.	15.6	210
138	Polyimide nonwoven fabric-reinforced, flexible phosphosilicate glass composite membranes for high-temperature/low-humidity proton exchange membrane fuel cells. Journal of Materials Chemistry, 2012, 22, 18550.	6.7	27
139	A proton conductive silicate-nanoencapsulated polyimide nonwoven as a novel porous substrate for a reinforced sulfonated poly(arylene ether sulfone) composite membrane. Journal of Materials Chemistry, 2012, 22, 1634-1642.	6.7	28
140	A polymer electrolyte-skinned active material strategy toward high-voltage lithium ion batteries: a polyimide-coated LiNi0.5Mn1.5O4 spinel cathode material case. Energy and Environmental Science, 2012, 5, 7124.	15.6	175
141	Evaporation-induced, close-packed silica nanoparticle-embedded nonwoven composite separator membranes for high-voltage/high-rate lithium-ion batteries: Advantageous effect of highly percolated, electrolyte-philic microporous architecture. Journal of Membrane Science, 2012, 415-416, 513-519.	4.1	82
142	Evaporation-induced self-assembled silica colloidal particle-assisted nanoporous structural evolution of poly(ethylene terephthalate) nonwoven composite separators for high-safety/high-rate lithium-ion batteries. Journal of Power Sources, 2012, 216, 42-47.	4.0	58
143	Cableâ€Type Flexible Lithium Ion Battery Based on Hollow Multiâ€Helix Electrodes. Advanced Materials, 2012, 24, 5192-5197.	11.1	331
144	Composition ratio-dependent structural evolution of SiO2/poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 6	57 Td (fluc 2.6	oride-hexaflu 60

for lithium-ion batteries. Electrochimica Acta, 2012, 86, 317-322.

9

#	Article	IF	CITATIONS
145	High-voltage cell performance and thermal stability of nanoarchitectured polyimide gel polymer electrolyte-coated LiCoO2 cathode materials. Electrochimica Acta, 2012, 86, 346-351.	2.6	37
146	A novel ion-conductive protection skin based on polyimide gel polymer electrolyte: application to nanoscale coating layer of high voltage LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 12574.	6.7	76
147	SiO2 ceramic nanoporous substrate-reinforced sulfonated poly(arylene ether sulfone) composite membranes for proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2012, 37, 6189-6198.	3.8	32
148	Multilayer-structured, SiO2/sulfonated poly(phenylsulfone) composite membranes for proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2012, 37, 6182-6188.	3.8	21
149	Sulfonated SBA-15 mesoporous silica-incorporated sulfonated poly(phenylsulfone) composite membranes for low-humidity proton exchange membrane fuel cells: Anomalous behavior of humidity-dependent proton conductivity. International Journal of Hydrogen Energy, 2012, 37, 9202-9211.	3.8	39
150	Restricted growth of LiMnPO4 nanoparticles evolved from a precursor seed. Journal of Power Sources, 2012, 210, 1-6.	4.0	52
151	Facile fabrication of nanoporous composite separator membranes for lithium-ion batteries: poly(methyl methacrylate) colloidal particles-embedded nonwoven poly(ethylene terephthalate). Journal of Materials Chemistry, 2011, 21, 8192.	6.7	65
152	Particle size-dependent, tunable porous structure of a SiO2/poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 for a lithium-ion battery. Journal of Materials Chemistry, 2011, 21, 14747.) 467 Td (6.7	fluoride-hexa 156
153	The feasibility of a pyrrolidinium-based ionic liquid solvent for non-graphitic carbon electrodes. Electrochemistry Communications, 2011, 13, 1256-1259.	2.3	14
154	A self-standing, UV-cured polymer networks-reinforced plastic crystal composite electrolyte for a lithium-ion battery. Electrochimica Acta, 2011, 57, 40-45.	2.6	98
155	SiO2 nanoparticles-coated poly(paraphenylene terephthalamide) nonwovens as reinforcing porous substrates for proton-conducting, sulfonated poly(arylene ether sulfone)-impregnated composite membranes. Solid State Ionics, 2011, 190, 30-37.	1.3	15
156	A Facile Approach to Fabricate Selfâ€6tanding Gelâ€Polymer Electrolytes for Flexible Lithiumâ€Ion Batteries by Exploitation of UVâ€Cured Trivalent/Monovalent Acrylate Polymer Matrices. Macromolecular Chemistry and Physics, 2011, 212, 2217-2223.	1.1	25
157	Potential application of microporous structured poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 26 high-voltage and high-power lithium-ion batteries. Electrochimica Acta, 2011, 56, 5201-5204.	57 Td (fluc 2.6	oride-hexaflud 44
158	SiO2-coated polyimide nonwoven/Nafion composite membranes for proton exchange membrane fuel cells. Journal of Membrane Science, 2011, 367, 265-272.	4.1	56
159	Close-packed poly(methyl methacrylate) nanoparticle arrays-coated polyethylene separators for high-power lithium-ion polymer batteries. Journal of Power Sources, 2011, 196, 7035-7038.	4.0	91
160	Cycling performance and thermal stability of lithium polymer cells assembled with ionic liquid-containing gel polymer electrolytes. Journal of Power Sources, 2011, 196, 6750-6755.	4.0	46
161	Closely packed SiO2 nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries. Journal of Power Sources, 2011, 196, 6716-6722.	4.0	242
162	Size controlled synthesis of Li2MnSiO4 nanoparticles: Effect of calcination temperature and carbon content for high performance lithium batteries. Journal of Colloid and Interface Science, 2011, 355, 472-477.	5.0	55

#	Article	IF	CITATIONS
163	Hydrophilicity/porous structure-tuned, SiO2/polyetherimide-coated polyimide nonwoven porous substrates for reinforced composite proton exchange membranes. Journal of Colloid and Interface Science, 2011, 362, 607-614.	5.0	13
164	Thiol-terminated polystyrene through the reversible addition–fragmentation chain transfer technique for the preparation of gold nanoparticles and their application in organic memory devices. Reactive and Functional Polymers, 2011, 71, 187-194.	2.0	24
165	SiO ₂ /styrene butadiene rubber-coated poly(ethylene terephthalate) nonwoven composite separators for safer lithium-ion batteries. Journal of Electrochemical Science and Technology, 2011, 2, 51-56.	0.9	3
166	Polarity-tuned Gel Polymer Electrolyte Coating of High-voltage LiCoO2Cathode Materials. Journal of the Korean Electrochemical Society, 2011, 14, 117-124.	0.1	1
167	Lithium metal polymer cells assembled with gel polymer electrolytes containing ionic liquid. Current Applied Physics, 2010, 10, e97-e100.	1.1	11
168	Control of water-channel structure and state of water in sulfonated poly(arylene ether) Tj ETQq0 0 0 rgBT /Overlo properties for DMFC membranes. Journal of Membrane Science, 2010, 346, 131-135.	ock 10 Tf 5 4.1	33 547 Td
169	Effect of conducting additives on the properties of composite cathodes for lithium-ion batteries. Journal of Solid State Electrochemistry, 2010, 14, 593-597.	1.2	18
170	Effect of MWCNT on the performances of the rounded shape natural graphite as anode material for lithium-ion batteries. Journal of Solid State Electrochemistry, 2010, 14, 951-956.	1.2	8
171	Synthesis and characterization of sulfonated poly(arylene ether sulfone) ionomers incorporating perfluorohexylene units for DMFC membranes. Macromolecular Research, 2010, 18, 352-357.	1.0	23
172	Effect of Solvent–Nonsolvent Miscibility on Morphology and Electrochemical Performance of SiO ₂ /PVdFâ€HFPâ€Based Composite Separator Membranes for Safer Lithiumâ€lon Batteries. Macromolecular Chemistry and Physics, 2010, 211, 420-425.	1.1	47
173	In situ hybrid Nafion/SiO2–P2O5 proton conductors for high-temperature and low-humidity proton exchange membrane fuel cells. Journal of Membrane Science, 2010, 360, 210-216.	4.1	16
174	Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly(vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries. Journal of Membrane Science, 2010, 364, 177-182.	4.1	175
175	Effect of phase inversion on microporous structure development of Al2O3/poly(vinylidene) Tj ETQq1 1 0.784314 of Power Sources, 2010, 195, 6116-6121.	rgBT /Ove 4.0	rlock 10 Tf 5 209
176	Close-packed SiO2/poly(methyl methacrylate) binary nanoparticles-coated polyethylene separators for lithium-ion batteries. Journal of Power Sources, 2010, 195, 8306-8310.	4.0	179
177	Effect of silane hydrophilicity on membrane transport properties of in-situ hybrid Nafion/organically modified silicate proton conductors for DMFC applications. Solid State Ionics, 2010, 181, 714-718.	1.3	8
178	Polyimide gel polymer electrolyte-nanoencapsulated LiCoO2 cathode materials for high-voltage Li-ion batteries. Electrochemistry Communications, 2010, 12, 1099-1102.	2.3	82
179	A novel poly(vinylidene fluoride-hexafluoropropylene)/poly(ethylene terephthalate) composite nonwoven separator with phase inversion-controlled microporous structure for a lithium-ion battery. Journal of Materials Chemistry, 2010, 20, 9180.	6.7	138
180	Control of nanoparticle dispersion in SPAES/SiO2 composite proton conductors and its influence on DMFC membrane performance. Electrochemistry Communications, 2009, 11, 1492-1495.	2.3	24

#	Article	IF	CITATIONS
181	Nanoscale Phase Separation of Sulfonated Poly(arylene ether sulfone)/Poly(ether sulfone) Semi-IPNs for DMFC Membrane Applications. Macromolecules, 2009, 42, 5244-5250.	2.2	39
182	Effect of Microporous Structure of Al2O3/PVdF_HFP Ceramic Coating Layers on Thermal Stability and Electrochemical Performance of Composite Separators for Lithium-Ion Batteries. Journal of the Korean Electrochemical Society, 2009, 12, 324-328.	0.1	1
183	Nano-encapsulation of LiCoO2 cathodes by a novel polymer electrolyte and its influence on thermal safeties of Li-ion batteries. Electrochemistry Communications, 2008, 10, 113-117.	2.3	14
184	Nano-encapsulation of graphite-based anodes by a novel polymer electrolyte and its influence on C-rate performances of Li-ion batteries. Electrochemistry Communications, 2008, 10, 1625-1628.	2.3	12
185	Improved High Rate Capabilities of Composite Cathodes for Lithium Ion Batteries. Journal of the Korean Electrochemical Society, 2008, 11, 309-312.	0.1	0
186	Effects of melt-extension and annealing on row-nucleated lamellar crystalline structure of HDPE films. Journal of Applied Polymer Science, 2007, 103, 3326-3333.	1.3	19
187	Performances and thermal stability of LiCoO2 cathodes encapsulated by a new gel polymer electrolyte. Journal of Power Sources, 2007, 174, 480-483.	4.0	10
188	Lamellar crystalline structure of hard elastic HDPE films and its influence on microporous membrane formation. Polymer, 2006, 47, 3540-3547.	1.8	86
189	A new water-free proton conducting membrane for high-temperature application. Journal of Power Sources, 2006, 163, 27-33.	4.0	12
190	Performance and thermal stability of LiCoO2 cathode modified with ionic liquid. Journal of Power Sources, 2005, 146, 732-735.	4.0	15
191	Phase Behavior of Gel-Type Polymer Electrolytes and Its Influence on Electrochemical Properties. ChemPhysChem, 2005, 6, 49-53.	1.0	14
192	A Novel Water-Free Proton-Conducting Solid Electrolyte based on an Organic/Inorganic Hybrid. Advanced Materials, 2005, 17, 626-630.	11.1	20
193	Two-Cation Competition in Ionic-Liquid-Modified Electrolytes for Lithium Ion Batteries. Journal of Physical Chemistry B, 2005, 109, 13663-13667.	1.2	65
194	Preparation of micro-porous gel polymer for lithium ion polymer battery. Electrochimica Acta, 2004, 50, 363-366.	2.6	43
195	Effect of compatibilizer on the crystallization, rheological, and tensile properties of LDPE/EVOH blends. , 1998, 68, 1245-1256.		24
196	Laminar morphology development and oxygen permeability of LDPE/EVOH blends. Polymer Engineering and Science, 1997, 37, 463-475.	1.5	72