Dezhi Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1030100/publications.pdf Version: 2024-02-01

<u> Πεζηι Μ</u>ι

#	Article	IF	CITATIONS
1	Soft magnetic composites for highly deformable actuators by four-dimensional electrohydrodynamic printing. Composites Part B: Engineering, 2022, 231, 109596.	12.0	26
2	Remote vascular interventional surgery robotics: a literature review. Quantitative Imaging in Medicine and Surgery, 2022, 12, 2552-2574.	2.0	19
3	Design, fabrication and application of magnetically actuated micro/nanorobots: a review. Nanotechnology, 2022, 33, 152001.	2.6	17
4	Laser-Sculptured Hierarchical Spinous Structures for Ultra-High-Sensitivity Iontronic Sensors with a Broad Operation Range. ACS Applied Materials & Interfaces, 2022, 14, 19672-19682.	8.0	18
5	A flexible tactile sensor that uses polyimide/graphene oxide nanofiber as dielectric membrane for vertical and lateral force detection. Nanotechnology, 2022, 33, 405205.	2.6	9
6	A Flexible Pressure Sensor with Wide Range Using Polyimide/Graphene Oxide/BaTiO ₃ Nanofibers as Dielectric Layer. , 2022, , .		0
7	Printing of Tactile Sensors Upon the Surface of Pneumatic Soft Gripper by Direct Writing and Electrospraying to Enable Intelligent Grasping. Advanced Engineering Materials, 2022, 24, .	3.5	5
8	A high-sensitivity graphene ammonia sensor via aerosol jet printing. Sensors and Actuators A: Physical, 2021, 318, 112434.	4.1	35
9	3D printing of magnetically actuated miniature soft robots. , 2021, , .		2
10	A Robotic Dynamic Tactile Sensing System based on Electronic Skin. , 2021, , .		1
11	A robust stretchable pressure sensor for electronic skins. Organic Electronics, 2020, 86, 105926.	2.6	4
12	A Remote-Controlled Robotic System with Safety Protection Strategy Based on Force-Sensing and Bending Feedback for Transcatheter Arterial Chemoembolization. Micromachines, 2020, 11, 805.	2.9	16
13	A flexible capacitive pressure sensor based on an electrospun polyimide nanofiber membrane. Organic Electronics, 2020, 84, 105759.	2.6	47
14	Human-Touch-Inspired Material Recognition for Robotic Tactile Sensing. Applied Sciences (Switzerland), 2019, 9, 2537.	2.5	14
15	Highly Sensitive NH3 Wireless Sensor Based on Ag-RGO Composite Operated at Room-temperature. Scientific Reports, 2019, 9, 9942.	3.3	40
16	Semiâ€Interpenetrating Networkâ€Structured Singleâ€Ion Conduction Polymer Electrolyte for Lithiumâ€Ion Batteries. ChemElectroChem, 2019, 6, 4483-4490.	3.4	28
17	Concentrated Multi-nozzle Electrospinning. Fibers and Polymers, 2019, 20, 1180-1186.	2.1	11
18	The Impact of the Electronic Skin Substrate on the Robotic Tactile Sensing. International Journal of Humanoid Robotics. 2019. 16. 1950026.	1.1	2

Dezhi Wu

#	Article	IF	CITATIONS
19	Shoepad nanogenerator based on electrospun PVDF nanofibers. Microsystem Technologies, 2019, 25, 3151-3156.	2.0	16
20	Direct write of a flexible high-sensitivity pressure sensor with fast response for electronic skins. Organic Electronics, 2019, 67, 10-18.	2.6	38
21	The microscale Weissenberg effect for high-viscosity solution pumping at the picoliter level. Nanoscale, 2018, 10, 7127-7137.	5.6	25
22	A Simple Graphene NH3 Gas Sensor via Laser Direct Writing. Sensors, 2018, 18, 4405.	3.8	46
23	Improve the Performance of Mechanoelectrical Transduction of Ionic Polymer-Metal Composites Based on Ordered Nafion Nanofibres by Electrospinning. Polymers, 2018, 10, 803.	4.5	9
24	Sonochemical and mechanical stirring synthesis of liquid metal nanograss structures for lowâ€cost SERS substrates. Journal of Raman Spectroscopy, 2018, 49, 1301-1310.	2.5	11
25	Biomimetic Beetle-Inspired Flapping Air Vehicle Actuated by Ionic Polymer-Metal Composite Actuator. Applied Bionics and Biomechanics, 2018, 2018, 1-7.	1.1	14
26	A novel piezostack-driven jetting dispenser with corner-filleted flexure hinge and high-frequency performance. Journal of Micromechanics and Microengineering, 2018, 28, 075001.	2.6	20
27	A high-safety PVDF/Al ₂ O ₃ composite separator for Li-ion batteries via tip-induced electrospinning and dip-coating. RSC Advances, 2017, 7, 24410-24416.	3.6	86
28	Investigation of electrohydrodynamic behaviors from open planar solution under rod-induced electrospinning. Journal Physics D: Applied Physics, 2017, 50, 455602.	2.8	4
29	Direct-write graphene resistors on aromatic polyimide for transparent heating glass. Sensors and Actuators A: Physical, 2017, 267, 327-333.	4.1	26
30	Direct writing based on Weissenberg effect. , 2017, , .		0
31	Slot Antenna Integrated Re-Entrant Resonator Based Wireless Pressure Sensor for High-Temperature Applications. Sensors, 2017, 17, 1963.	3.8	21
32	A Modified Ceramic-Coating Separator with High-Temperature Stability for Lithium-Ion Battery. Polymers, 2017, 9, 159.	4.5	61
33	Enhanced Deposition Uniformity via an Auxiliary Electrode in Massive Electrospinning. Nanomaterials, 2016, 6, 135.	4.1	7
34	Dielectrically-Loaded Cylindrical Resonator-Based Wireless Passive High-Temperature Sensor. Sensors, 2016, 16, 2037.	3.8	22
35	3d printing stereo networks microfluidic concentration gradient chip. , 2016, , .		0
36	Electrohydrodynamic direct-writing orderly pattern with sheath gas focusing. AIP Advances, 2016, 6, 115304.	1.3	10

Dezhi Wu

4

#	Article	IF	CITATIONS
37	High aspect-ratio 3D microstructures via near-field electrospinning for energy storage applications. , 2016, , .		6
38	A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine–ceramic composite modification of polyolefin membranes. Energy and Environmental Science, 2016, 9, 3252-3261.	30.8	246
39	A simple method to prepare a polydopamine modified core-shell structure composite separator for application in high-safety lithium-ion batteries. Journal of Membrane Science, 2016, 518, 168-177.	8.2	91
40	Polyethylene terephthalate/poly (vinylidene fluoride) composite separator for Li-ion battery. Journal Physics D: Applied Physics, 2015, 48, 285305.	2.8	11
41	Electrospinning-induced preferred dipole orientation in PVDF fibers. Journal of Materials Science, 2015, 50, 4342-4347.	3.7	86
42	Functional separator consisted of polyimide nonwoven fabrics and polyethylene coating layer for lithium-ion batteries. Journal of Power Sources, 2015, 298, 158-165.	7.8	125
43	Piezoelectric properties of PVDF nanofibers via non-uniform field electrospinning. , 2014, , .		1
44	Spectroscopic evidence for a high fraction of ferroelectric phase induced in electrospun polyvinylidene fluoride fibers. RSC Advances, 2013, 3, 24952.	3.6	85
45	High Throughput Tip-Less Electrospinning via a Circular Cylindrical Electrode. Journal of Nanoscience and Nanotechnology, 2010, 10, 4221-4226.	0.9	53
46	Large-scale patterned nanofibers via tip-less electrospinning. , 2010, , .		2
47	Electrospun Ordered Nanofibers on Si and SiO2 Substrate. , 2007, , .		5
48	A Novel Bonding Architecture Based on AAO. , 2007, , .		0
49	Pattern deposition of electrosprayed polymer nanoparticles. , 2007, , .		1

50 Needleless electroSpinning of multiple nanofibers. , 2007, , .