Michelle Yvonne Alexander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1029897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Endothelial function in cardiovascular medicine: a consensus paper of the European Society of Cardiology Working Groups on Atherosclerosis and Vascular Biology, Aorta and Peripheral Vascular Diseases, Coronary Pathophysiology and Microcirculation, and Thrombosis. Cardiovascular Research, 2021, 117, 29-42.	3.8	164
2	Loss of SIRT1 in diabetes accelerates DNA damage-induced vascular calcification. Cardiovascular Research, 2021, 117, 836-849.	3.8	49
3	The modulatory role of sulfated and non-sulfated small molecule heparan sulfate-glycomimetics in endothelial dysfunction: absolute structural clarification, molecular docking and simulated dynamics, SAR analyses and ADMET studies. RSC Medicinal Chemistry, 2021, 12, 779-790.	3.9	8
4	Nanostructured Lipid Carriers Deliver Resveratrol, Restoring Attenuated Dilation in Small Coronary Arteries, via the AMPK Pathway. Biomedicines, 2021, 9, 1852.	3.2	6
5	Modulating Oxidative Stress in Drug-Induced Injury and Metabolic Disorders: The Role of Natural and Synthetic Antioxidants. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-5.	4.0	14
6	Diabetic endothelial colony forming cells have the potential for restoration with glycomimetics. Scientific Reports, 2019, 9, 2309.	3.3	19
7	Tetramethoxystilbene-Loaded Liposomes Restore Reactive-Oxygen-Species-Mediated Attenuation of Dilator Responses in Rat Aortic Vessels Ex vivo. Molecules, 2019, 24, 4360.	3.8	7
8	QRISK3 improves detection of cardiovascular disease risk in patients with systemic lupus erythematosus. Lupus Science and Medicine, 2018, 5, e000272.	2.7	22
9	Endothelial Progenitor Cells: New Targets for Therapeutics for Inflammatory Conditions With High Cardiovascular Risk. Frontiers in Medicine, 2018, 5, 200.	2.6	38
10	The Association of Baseline and Longitudinal Change in Endothelial Microparticle Count with Mortality in Chronic Kidney Disease. Nephron, 2017, 135, 252-260.	1.8	3
11	Endothelial microparticles prevent lipidâ€induced endothelial damage <i>via</i> Akt/eNOS signaling and reduced oxidative stress. FASEB Journal, 2017, 31, 4636-4648.	0.5	71
12	A novel role for small molecule glycomimetics in the protection against lipid-induced endothelial dysfunction: Involvement of Akt/eNOS and Nrf2/ARE signaling. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3311-3322.	2.4	58
13	Oxidative Stress in Metabolic Disorders and Drug-Induced Injury: The Potential Role of Nrf2 and PPARs Activators. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-4.	4.0	18
14	The Role of Nrf2 in Cardiovascular Function and Disease. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-18.	4.0	190
15	Vitamin D improves endothelial dysfunction and restores myeloid angiogenic cell function via reduced CXCL-10 expression in systemic lupus erythematosus. Scientific Reports, 2016, 6, 22341.	3.3	54
16	Vascular biology: New mechanisms and pathways. Vascular Pharmacology, 2016, 86, 1-2.	2.1	0
17	Elevated levels of endothelial-derived microparticles and serum CXCL9 and SCGF-Î ² are associated with unstable asymptomatic carotid plaques Scientific Reports, 2015, 5, 16658.	3.3	37
18	173â€Infused silica nanoparticles compromise vascular function in small mesenteric arteries. Heart, 2015, 101, A98.2-A98.	2.9	0

#	Article	IF	CITATIONS
19	PROTECTIVE EFFECTS OF PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR (PPAR)-ß ACTIVATION ON LIPID-INDUCED ENDOTHELIAL DYSFUNCTION via CARNITINE PALMITOYL TRANSFERASE-1 UPREGULATION. Heart, 2014, 100, A9.1-A9.	2.9	0
20	Suppression of inflammation reduces endothelial microparticles in active systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2014, 73, 1144-1150.	0.9	75
21	The Effect of Type 1 IFN on Human Aortic Endothelial Cell Function <i>In Vitro</i> : Relevance to Systemic Lupus Erythematosus. Journal of Interferon and Cytokine Research, 2014, 34, 404-412.	1.2	11
22	RANKL–OPG and RAGE modulation in vascular calcification and diabetes: novel targets for therapy. Diabetologia, 2014, 57, 2251-2260.	6.3	50
23	Endothelial microparticles as conveyors of information in atherosclerotic disease. Atherosclerosis, 2014, 234, 295-302.	0.8	86
24	Monomeric C-reactive protein and Notch-3 co-operatively increase angiogenesis through PI3K signalling pathway. Cytokine, 2014, 69, 165-179.	3.2	54
25	Improving cardiovascular outcomes in rheumatic diseases: Therapeutic potential of circulating endothelial progenitor cells. , 2014, 142, 231-243.		19
26	Hepatocyte growth factor is sequestered in dentine matrix and promotes regeneration-associated events in dental pulp cells. Cytokine, 2013, 61, 622-629.	3.2	27
27	Certolizumab pegol attenuates the pro-inflammatory state in endothelial cells in a manner that is atheroprotective. Clinical and Experimental Rheumatology, 2013, 31, 225-33.	0.8	14
28	Endothelial progenitor cells: a new player in lupus?. Arthritis Research and Therapy, 2012, 14, 203.	3.5	16
29	Endothelial Progenitor Cells Enter the Aging Arena. Frontiers in Physiology, 2012, 3, 30.	2.8	81
30	HGF/c-Met signalling promotes Notch3 activation and human vascular smooth muscle cell osteogenic differentiation in vitro. Atherosclerosis, 2011, 219, 440-447.	0.8	32
31	Decorin GAG Synthesis and TGF-β Signaling Mediate Ox-LDL–Induced Mineralization of Human Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 608-615.	2.4	73
32	The RANKL/RANK/OPG Signaling Pathway Mediates Medial Arterial Calcification in Diabetic Charcot Neuroarthropathy. Diabetes, 2011, 60, 2187-2196.	0.6	116
33	Calcification is associated with loss of functional calcium-sensing receptor in vascular smooth muscle cells. Cardiovascular Research, 2009, 81, 260-268.	3.8	179
34	RANKL Links Arterial Calcification With Osteolysis. Circulation Research, 2009, 104, 1032-1034.	4.5	17
35	Tripartite Meeting in Gene and Cell Therapy, 2008: Irish Society for Gene and Cell Therapy, British Society for Gene Therapy, and International Society for Cell and Gene Therapy of Cancer. Human Gene Therapy, 2008, 19, 967-978.	2.7	2
36	Axl/Phosphatidylinositol 3-Kinase Signaling Inhibits Mineral Deposition by Vascular Smooth Muscle Cells. Circulation Research, 2007, 100, 502-509.	4.5	77

#	Article	IF	CITATIONS
37	Dexamethasone Downregulates Calcification-Inhibitor Molecules and Accelerates Osteogenic Differentiation of Vascular Pericytes. Circulation Research, 2006, 98, 1264-1272.	4.5	84
38	Identification and Characterization of Vascular Calcification–Associated Factor, a Novel Gene Upregulated During Vascular Calcification In Vitro and In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1851-1857.	2.4	23
39	Receptor Tyrosine Kinase Axl Modulates the Osteogenic Differentiation of Pericytes. Circulation Research, 2003, 92, 1123-1129.	4.5	82
40	Gene transfer of endothelial nitric oxide synthase but not Cu/Zn superoxide dismutase restores nitric oxide availability in the SHRSP. Cardiovascular Research, 2000, 47, 609-617.	3.8	42
41	Genes and Hypertension. Hypertension, 2000, 35, 164-172.	2.7	97
42	Gene transfer of endothelial nitric oxide synthase improves nitric oxide-dependent endothelial function in a hypertensive rat model. Cardiovascular Research, 1999, 43, 798-807.	3.8	44
43	Liposome-mediated gene transfer and expression via the skin. Human Molecular Genetics, 1995, 4, 2279-2285.	2.9	125