Stephanie J Florczyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1029867/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chitosan–alginate 3D scaffolds as a mimic of the glioma tumor microenvironment. Biomaterials, 2010, 31, 5903-5910.	5.7	183
2	Porous chitosan-hyaluronic acid scaffolds as a mimic of glioblastoma microenvironment ECM. Biomaterials, 2013, 34, 10143-10150.	5.7	182
3	High-strength pristine porous chitosan scaffolds for tissue engineering. Journal of Materials Chemistry, 2012, 22, 6291.	6.7	106
4	Proliferation and enrichment of CD133+ glioblastoma cancer stem cells on 3D chitosan-alginate scaffolds. Biomaterials, 2014, 35, 9137-9143.	5.7	105
5	Influence of processing parameters on pore structure of 3D porous chitosan–alginate polyelectrolyte complex scaffolds. Journal of Biomedical Materials Research - Part A, 2011, 98A, 614-620.	2.1	87
6	Chitosan-Alginate Scaffold Culture System for Hepatocellular Carcinoma Increases Malignancy and Drug Resistance. Pharmaceutical Research, 2010, 27, 1939-1948.	1.7	86
7	Periodically Patterned Au-TiO ₂ Heterostructures for Photoelectrochemical Sensor. ACS Sensors, 2017, 2, 621-625.	4.0	86
8	Integrated Bi‣ayered Scaffold for Osteochondral Tissue Engineering. Advanced Healthcare Materials, 2013, 2, 872-883.	3.9	83
9	3D Porous Chitosan–Alginate Scaffolds: A New Matrix for Studying Prostate Cancer Cell–Lymphocyte Interactions In Vitro. Advanced Healthcare Materials, 2012, 1, 590-599.	3.9	76
10	Evaluation of threeâ€dimensional porous chitosan–alginate scaffolds in rat calvarial defects for bone regeneration applications. Journal of Biomedical Materials Research - Part A, 2013, 101, 2974-2983.	2.1	66
11	3D porous chitosan-alginate scaffold stiffness promotes differential responses in prostate cancer cell lines. Biomaterials, 2019, 217, 119311.	5.7	64
12	3D porous chitosan–alginate scaffolds promote proliferation and enrichment of cancer stem-like cells. Journal of Materials Chemistry B, 2016, 4, 6326-6334.	2.9	63
13	3D Porous Chitosan–Alginate Scaffolds as an In Vitro Model for Evaluating Nanoparticle-Mediated Tumor Targeting and Gene Delivery to Prostate Cancer. Biomacromolecules, 2015, 16, 3362-3372.	2.6	62
14	Three-Dimensional Scaffolds to Evaluate Tumor Associated Fibroblast-Mediated Suppression of Breast Tumor Specific T Cells. Biomacromolecules, 2013, 14, 1330-1337.	2.6	54
15	Machine learning based methodology to identify cell shape phenotypes associated with microenvironmental cues. Biomaterials, 2016, 104, 104-118.	5.7	38
16	3D porous chitosan-chondroitin sulfate scaffolds promote epithelial to mesenchymal transition in prostate cancer cells. Biomaterials, 2020, 254, 120126.	5.7	38
17	Enhanced bone tissue formation by alginate gelâ€assisted cell seeding in porous ceramic scaffolds and sustained release of growth factor. Journal of Biomedical Materials Research - Part A, 2012, 100A, 3408-3415.	2.1	33
18	Freeze-FRESH: A 3D Printing Technique to Produce Biomaterial Scaffolds with Hierarchical Porosity. Materials, 2020, 13, 354.	1.3	26

STEPHANIE J FLORCZYK

#	Article	IF	CITATIONS
19	CCL21 and IFNγ Recruit and Activate Tumor Specific T cells in 3D Scaffold Model of Breast Cancer. Anti-Cancer Agents in Medicinal Chemistry, 2014, 14, 204-210.	0.9	26
20	Evaluation of the effect of <scp>3D</scp> porous <scp>Chitosanâ€alginate</scp> scaffold stiffness on breast cancer proliferation and migration. Journal of Biomedical Materials Research - Part A, 2021, 109, 1990-2000.	2.1	17
21	Effect of Mold Geometry on Pore Size in Freeze-Cast Chitosan-Alginate Scaffolds for Tissue Engineering. Annals of Biomedical Engineering, 2020, 48, 1090-1102.	1.3	15
22	Ethical Issues in Nanotechnology. Journal of Long-Term Effects of Medical Implants, 2007, 17, 271-280.	0.2	14
23	Direct-Contact Cytotoxicity Evaluation of CoCrFeNi-Based Multi-Principal Element Alloys. Journal of Functional Biomaterials, 2018, 9, 59.	1.8	10
24	Effect of the scaffold microenvironment on cell polarizability and capacitance determined by probabilistic computations. Biomedical Materials (Bristol), 2018, 13, 025012.	1.7	7
25	A Bioinformatics 3D Cellular Morphotyping Strategy for Assessing Biomaterial Scaffold Niches. ACS Biomaterials Science and Engineering, 2017, 3, 2302-2313.	2.6	4
26	Modeling, validation and verification of three-dimensional cell-scaffold contacts from terabyte-sized images. BMC Bioinformatics, 2017, 18, 526.	1.2	4
27	Optimization of Freeze-FRESH Methodology for 3D Printing of Microporous Collagen Constructs. 3D Printing and Additive Manufacturing, 2022, 9, 411-424.	1.4	3
28	3D Cellular Morphotyping of Scaffold Niches. , 2016, , .		1
29	Ethical Challenges Posed by Nanotechnology. , 2010, , .		0
30	Modeling, validation and verification of cell-scaffold contact measurements over terabyte-sized 3D image collection. , 2016, , .		0
31	Manufacture of Nanoparticles from Bone: A Preliminary Study. Journal of Long-Term Effects of Medical Implants, 2009, 19, 323-329.	0.2	Ο