Jia Fu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1029794/publications.pdf

Version: 2024-02-01

57631 64668 9,031 375 44 79 citations h-index g-index papers 376 376 376 4490 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Potassium–sodium niobate based lead-free ceramics: novel electrical energy storage materials. Journal of Materials Chemistry A, 2017, 5, 554-563.	5.2	472
2	Significantly enhanced recoverable energy storage density in potassium–sodium niobate-based lead free ceramics. Journal of Materials Chemistry A, 2016, 4, 13778-13785.	5.2	409
3	Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances. Journal of Applied Physics, 2014, 115, .	1.1	304
4	Deep Learning: A Rapid and Efficient Route to Automatic Metasurface Design. Advanced Science, 2019, 6, 1900128.	5.6	236
5	Realizing high comprehensive energy storage performance in lead-free bulk ceramics <i>via</i> designing an unmatched temperature range. Journal of Materials Chemistry A, 2019, 7, 27256-27266.	5.2	223
6	Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces. Applied Physics Letters, 2014, 104, .	1.5	190
7	Broadband polarization rotator based on multi-order plasmon resonances and high impedance surfaces. Journal of Applied Physics, 2013, 114, .	1.1	165
8	Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces. Journal of Applied Physics, 2015, 117, .	1.1	159
9	High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces. Applied Physics Letters, 2012, 101, .	1.5	153
10	Filter-Antenna Consisting of Conical FSS Radome and Monopole Antenna. IEEE Transactions on Antennas and Propagation, 2012, 60, 3040-3045.	3.1	149
11	Thermally tunable water-substrate broadband metamaterial absorbers. Applied Physics Letters, 2017, 110, .	1.5	127
12	A Novel High-Directivity Microstrip Patch Antenna Based on Zero-Index Metamaterial. IEEE Antennas and Wireless Propagation Letters, 2009, 8, 538-541.	2.4	123
13	Metantenna: When Metasurface Meets Antenna Again. IEEE Transactions on Antennas and Propagation, 2020, 68, 1332-1347.	3.1	122
14	Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb. Scientific Reports, 2018, 8, 4817.	1.6	113
15	Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase. Scientific Reports, 2017, 7, .	1.6	112
16	A Miniaturized Dual-Band FSS With Stable Resonance Frequencies of 2.4 GHz/5 GHz for WLAN Applications. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 895-898.	2.4	107
17	Material parameter equation for elliptical cylindrical cloaks. Physical Review A, 2008, 77, .	1.0	99
18	Transparent broadband metamaterial absorber enhanced by water-substrate incorporation. Optics Express, 2018, 26, 15665.	1.7	99

#	Article	IF	Citations
19	Phase-to-pattern inverse design paradigm for fast realization of functional metasurfaces via transfer learning. Nature Communications, 2021, 12, 2974.	5.8	92
20	Multibeam Antennas Based on Spoof Surface Plasmon Polaritons Mode Coupling. IEEE Transactions on Antennas and Propagation, 2017, 65, 1187-1192.	3.1	91
21	A Tri-Band, Highly Selective, Bandpass FSS Using Cascaded Multilayer Loop Arrays. IEEE Transactions on Antennas and Propagation, 2016, 64, 2046-2049.	3.1	88
22	Gradient Metasurface With Both Polarization-Controlled Directional Surface Wave Coupling and Anomalous Reflection. IEEE Antennas and Wireless Propagation Letters, 2015, 14, 104-107.	2.4	85
23	Frequency Scanning Radiation by Decoupling Spoof Surface Plasmon Polaritons via Phase Gradient Metasurface. IEEE Transactions on Antennas and Propagation, 2018, 66, 203-208.	3.1	84
24	Water-based metamaterial absorbers for optical transparency and broadband microwave absorption. Journal of Applied Physics, 2018, 123, .	1.1	81
25	Spatial k-dispersion engineering of spoof surface plasmon polaritons for customized absorption. Scientific Reports, 2016, 6, 29429.	1.6	76
26	Absorptive coding metasurface for further radar cross section reduction. Journal Physics D: Applied Physics, 2018, 51, 065603.	1.3	73
27	Broadband cross polarization converter using plasmon hybridizations in a ring/disk cavity. Optics Express, 2014, 22, 20973.	1.7	71
28	Experimental Demonstration of An Absorptive/Transmissive FSS With Magnetic Material. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 114-117.	2.4	70
29	An extremely wideband and lightweight metamaterial absorber. Journal of Applied Physics, 2015, 117, 224503.	1.1	70
30	A Novel Miniaturized Frequency Selective Surface With Stable Resonance. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 639-641.	2.4	69
31	The open cloak. Applied Physics Letters, 2009, 94, .	1.5	67
32	Hybrid metasurfaces for microwave reflection and infrared emission reduction. Optics Express, 2018, 26, 11950.	1.7	64
33	Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces. Applied Physics Letters, 2016, 109, .	1.5	61
34	Metasurface inverse design using machine learning approaches. Journal Physics D: Applied Physics, 2020, 53, 275105.	1.3	61
35	A Miniaturized Dual-Band FSS With Second-Order Response and Large Band Separation. IEEE Antennas and Wireless Propagation Letters, 2015, 14, 1602-1605.	2.4	58
36	Two-dimensional coding phase gradient metasurface for RCS reduction. Journal Physics D: Applied Physics, 2018, 51, 375103.	1.3	57

#	Article	IF	CITATIONS
37	Wideband RCS Reduction Metasurface With a Transmission Window. IEEE Transactions on Antennas and Propagation, 2020, 68, 7079-7087.	3.1	55
38	Broadband planar left-handed metamaterials using split-ring resonator pairs. Photonics and Nanostructures - Fundamentals and Applications, 2009, 7, 108-113.	1.0	54
39	Remotely mind-controlled metasurface via brainwaves. ELight, 2022, 2, .	11.9	54
40	Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial. Journal of Applied Physics, 2011, 109, .	1.1	53
41	Hybrid Metasurfaces for Infrared-Multiband Radar Stealth-Compatible Materials Applications. IEEE Access, 2019, 7, 147586-147595.	2.6	52
42	Programmable Coding Metasurface Reflector for Reconfigurable Multibeam Antenna Application. IEEE Transactions on Antennas and Propagation, 2021, 69, 296-301.	3.1	51
43	Numerical method for designing approximate cloaks with arbitrary shapes. Physical Review E, 2008, 78, 036608.	0.8	47
44	Origami-inspired metamaterial absorbers for improving the larger-incident angle absorption. Journal Physics D: Applied Physics, 2015, 48, 445008.	1.3	47
45	Metamaterial absorber for frequency selective thermal radiation. Infrared Physics and Technology, 2018, 88, 133-138.	1.3	47
46	Topology optimization design of a lightweight ultra-broadband wide-angle resistance frequency selective surface absorber. Journal Physics D: Applied Physics, 2015, 48, 215101.	1.3	45
47	Super-Thin Cloaks Based on Microwave Networks. IEEE Transactions on Antennas and Propagation, 2013, 61, 748-754.	3.1	44
48	Achieving wideband polarization-independent anomalous reflection for linearly polarized waves with dispersionless phase gradient metasurfaces. Journal Physics D: Applied Physics, 2014, 47, 425103.	1.3	44
49	Wideband Frequency Scanning Spoof Surface Plasmon Polariton Planar Antenna Based on Transmissive Phase Gradient Metasurface. IEEE Antennas and Wireless Propagation Letters, 2018, 17, 463-467.	2.4	44
50	Low RCS Antennas Based on Dispersion Engineering of Spoof Surface Plasmon Polaritons. IEEE Transactions on Antennas and Propagation, 2018, 66, 7111-7116.	3.1	43
51	Approximation approach of designing practical cloaks with arbitrary shapes. Optics Express, 2008, 16, 15449.	1.7	42
52	A Controllable Magnetic Metamaterial: Split-Ring Resonator With Rotated Inner Ring. IEEE Transactions on Antennas and Propagation, 2008, 56, 2018-2022.	3.1	42
53	All-dielectric metamaterial frequency selective surfaces based on high-permittivity ceramic resonators. Applied Physics Letters, 2015, 106, .	1.5	42
54	Low-RCS and High-Gain Circularly Polarized Metasurface Antenna. IEEE Transactions on Antennas and Propagation, 2019, 67, 7197-7203.	3.1	41

#	Article	IF	Citations
55	Multiband left-handed metamaterials. Applied Physics Letters, 2009, 95, 014105.	1.5	40
56	A WIDE-BAND, POLARIZATION-INSENSITIVE AND WIDE-ANGLE TERAHERTZ METAMATERIAL ABSORBER. Progress in Electromagnetics Research Letters, 2010, 17, 171-179.	0.4	39
57	k-dispersion engineering of spoof surface plasmon polaritons for beam steering. Optics Express, 2016, 24, 842.	1.7	39
58	An optical-transparent metamaterial for high-efficiency microwave absorption and low infrared emission. Journal Physics D: Applied Physics, 2020, 53, 135109.	1.3	39
59	Loss-Assisted Metasurface at an Exceptional Point. ACS Photonics, 2020, 7, 3321-3327.	3.2	39
60	Merging absorption bands of plasmonic structures via dispersion engineering. Applied Physics Letters, 2018, 112, .	1.5	38
61	General method for designing wave shape transformers. Optics Express, 2008, 16, 22072.	1.7	37
62	Ultra-thin quadri-band metamaterial absorber based on spiral structure. Applied Physics A: Materials Science and Processing, 2015, 118, 443-447.	1.1	37
63	Ultra-wideband transparent $90 \hat{A}^\circ$ polarization conversion metasurfaces. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	37
64	Thermally Tunable Ultra-wideband Metamaterial Absorbers based on Three-dimensional Water-substrate construction. Scientific Reports, 2018, 8, 4423.	1.6	37
65	A Triband Second-Order Frequency Selective Surface. IEEE Antennas and Wireless Propagation Letters, 2011, 10, 507-509.	2.4	36
66	Carbon fiber assisted glass fabric composite materials for broadband radar cross section reduction. Composites Science and Technology, 2018, 158, 19-25.	3.8	36
67	Circulator Based on Spoof Surface Plasmon Polaritons. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 821-824.	2.4	35
68	Wide-angle flat metasurface corner reflector. Applied Physics Letters, 2018, 113, .	1.5	35
69	An optically transparent sandwich structure for radar-infrared bi-stealth. Infrared Physics and Technology, 2020, 105, 103108.	1.3	35
70	Optically transparent coding metasurface with simultaneously low infrared emissivity and microwave scattering reduction. Optics Express, 2020, 28, 27774.	1.7	35
71	Normal-incidence left-handed metamaterials based on symmetrically connected split-ring resonators. Physical Review E, 2010, 81, 036601.	0.8	33
72	Achromatic flat focusing lens based on dispersion engineering of spoof surface plasmon polaritons. Applied Physics Letters, 2017 , 110 , .	1.5	33

#	Article	IF	Citations
73	Shared-Aperture Antennas Based on Even- and Odd-Mode Spoof Surface Plasmon Polaritons. IEEE Transactions on Antennas and Propagation, 2020, 68, 3254-3258.	3.1	33
74	High temperature absorbing coatings with excellent performance combined Al2O3 and TiC material. Journal of the European Ceramic Society, 2020, 40, 2013-2019.	2.8	33
75	Fast optimization method of designing a wideband metasurface without using the Pancharatnam–Berry phase. Optics Express, 2018, 26, 1443.	1.7	32
76	In-Plane Feed Antennas Based on Phase Gradient Metasurface. IEEE Transactions on Antennas and Propagation, 2016, 64, 3760-3765.	3.1	31
77	Single-layer metasurface for ultra-wideband polarization conversion: bandwidth extension via Fano resonance. Scientific Reports, 2021, 11, 585.	1.6	31
78	Vortex beam generated by circular-polarized metasurface reflector antenna. Journal Physics D: Applied Physics, 2019, 52, 255306.	1.3	30
79	Reducing RCS of Patch Antennas via Dispersion Engineering of Metamaterial Absorbers. IEEE Transactions on Antennas and Propagation, 2020, 68, 1419-1425.	3.1	30
80	Multi-spectral functional metasurface simultaneously with visible transparency, low infrared emissivity and wideband microwave absorption. Infrared Physics and Technology, 2020, 110, 103469.	1.3	30
81	A visible-light-transparent camouflage-compatible flexible metasurface for infrared–radar stealth applications. Journal Physics D: Applied Physics, 2021, 54, 015001.	1.3	30
82	The effects of Bi(Mg2/3Nb1/3)O3 on piezoelectric and ferroelectric properties of K0.5Na0.5NbO3 lead-free piezoelectric ceramics. Journal of Alloys and Compounds, 2011, 509, 3537-3540.	2.8	29
83	Achieving all-dielectric metamaterial band-pass frequency selective surface via high-permittivity ceramics. Applied Physics Letters, 2016, 108, .	1.5	29
84	BroadBand spoof surface plasmon polaritons coupler based on dispersion engineering of metamaterials. Applied Physics Letters, 2017, 111 , .	1.5	29
85	Multifunctional full-space metasurface controlled by frequency, polarization and incidence angle. Optics Express, 2021, 29, 7544.	1.7	29
86	Band split in multiband all-dielectric left-handed metamaterials. Journal of Applied Physics, 2014, 115, .	1.1	28
87	Wideband Polarization Conversion with the Synergy of Waveguide and Spoof Surface Plasmon Polariton Modes. Physical Review Applied, 2018, 10, .	1.5	28
88	Low radar cross section checkerboard metasurface with a transmission window. Journal of Applied Physics, 2018, 124, .	1.1	28
89	Spinâ€toâ€Orbital Angular Momentum Conversion with Quasiâ€Continuous Spatial Phase Response. Advanced Optical Materials, 2019, 7, 1901188.	3.6	28
90	A band enhanced metamaterial absorber based on E-shaped all-dielectric resonators. AIP Advances, 2015, 5, .	0.6	27

#	Article	IF	Citations
91	A Quad-Band Frequency Selective Surface With Highly Selective Characteristics. IEEE Microwave and Wireless Components Letters, 2016, 26, 562-564.	2.0	27
92	Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice. Optics Express, 2018, 26, 28363.	1.7	27
93	Super-thin cloaks mediated by spoof surface plasmons. Photonics and Nanostructures - Fundamentals and Applications, 2012, 10, 540-546.	1.0	26
94	Miniaturized-Element Offset-Feed Planar Reflector Antennas Based on Metasurfaces. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 282-285.	2.4	26
95	Wideband selective polarization conversion mediated by three-dimensional metamaterials. Journal of Applied Physics, 2014, 115, 234506.	1.1	25
96	Electromagnetic reflection reduction of carbon composite materials mediated by collaborative mechanisms. Carbon, 2019, 147, 112-119.	5.4	25
97	Tailoring Circular Dichroism for Simultaneous Control of Amplitude and Phase via Ohmic Dissipation Metasurface. Advanced Optical Materials, 2021, 9, 2100140.	3.6	25
98	Ultra-wideband flexible transparent metamaterial with wide-angle microwave absorption and low infrared emissivity. Optics Express, 2021, 29, 22108.	1.7	25
99	Reconfigurable all-dielectric metamaterial frequency selective surface based on high-permittivity ceramics. Scientific Reports, 2016, 6, 24178.	1.6	23
100	Frequency-Selective Structure With Transmission and Scattering Deflection Based on Spoof Surface Plasmon Polariton Modes. IEEE Transactions on Antennas and Propagation, 2019, 67, 6508-6514.	3.1	23
101	Sixâ€Mode Orbital Angular Momentum Generator Enabled by Helicityâ€Assisted Fullâ€5pace Metasurface with Flexible Manipulation of Phase, Polarization, and Spatial Information. Advanced Optical Materials, 2022, 10, .	3.6	23
102	Ultraâ€broadband linearly polarisation manipulation metamaterial. Electronics Letters, 2014, 50, 1658-1660.	0.5	22
103	Broadband unidirectional cloaks based on flat metasurface focusing lenses. Journal Physics D: Applied Physics, 2015, 48, 335101.	1.3	22
104	Broadband reflectionless metamaterials with customizable absorption–transmission-integrated performance. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	22
105	Broadband Tunable Metamaterial Absorber Based on U-shaped Ferrite Structure. IEEE Access, 2019, 7, 150969-150975.	2.6	22
106	Absorptive frequency selective surface with two alternately switchable transmission/reflection bands. Optics Express, 2021, 29, 4219.	1.7	22
107	Multiplexing the aperture of a metasurface: inverse design via deep-learning-forward genetic algorithm. Journal Physics D: Applied Physics, 2020, 53, 455002.	1.3	22
108	A polarization-dependent wide-angle three-dimensional metamaterial absorber. Journal of Magnetism and Magnetic Materials, 2009, 321, 2805-2809.	1.0	21

#	Article	IF	CITATIONS
109	Ultra-wideband polarization conversion metasurfaces. , 2014, , .		21
110	Merging bands of polarization convertors by suppressing Fano resonance. Applied Physics Letters, 2018, 113, .	1.5	21
111	Recent developments of metamaterials/metasurfaces for RCS reduction. EPJ Applied Metamaterials, 2019, 6, 15.	0.8	21
112	Low-RCS Multi-Beam Metasurface-Inspired Antenna Based on Pancharatnam–Berry Phase. IEEE Transactions on Antennas and Propagation, 2020, 68, 1899-1906.	3.1	21
113	Full-space-manipulated multifunctional coding metasurface based on "Fabry-Pérot-like―cavity. Optics Express, 2019, 27, 21520.	1.7	21
114	Microwave birefringent metamaterials for polarization conversion based on spoof surface plasmon polariton modes. Scientific Reports, 2016, 6, 34518.	1.6	20
115	Broadband spoof surface plasmon polariton couplers based on transmissive phase gradient metasurface. Journal Physics D: Applied Physics, 2017, 50, 375104.	1.3	20
116	Fast coding method of metasurfaces based on 1D coding in orthogonal directions. Journal Physics D: Applied Physics, 2018, 51, 475103.	1.3	20
117	A microwave absorption/transmission integrated sandwich structure based on composite corrugation channel: Design, fabrication and experiment. Composite Structures, 2019, 229, 111425.	3.1	20
118	A thin dielectric ceramic coating with good absorbing properties composed by tungsten carbide and alumina. Journal of Alloys and Compounds, 2020, 818, 152851.	2.8	20
119	A thermally robust and optically transparent infrared selective emitter for compatible camouflage. Journal of Materials Chemistry C, 2021, 9, 15018-15025.	2.7	20
120	Ohmic Dissipationâ€Assisted Complex Amplitude Hologram with High Quality. Advanced Optical Materials, 2021, 9, 2002242.	3.6	20
121	Reflective frequency selective surface based on low-permittivity dielectric metamaterials. Applied Physics Letters, 2015, 107, 211906.	1.5	19
122	Phase random metasurfaces for broadband wideâ€angle radar cross section reduction. Microwave and Optical Technology Letters, 2015, 57, 2813-2819.	0.9	19
123	Diffraction radiation based on an anti-symmetry structure of spoof surface-plasmon waveguide. Applied Physics Letters, 2017, 110, .	1.5	19
124	Dual-band tunable infrared metamaterial absorber with VO <mml:math altimg="si5.gif" display="inline" id="mml5" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow>mml:mrow><mml:mrow></mml:mrow></mml:msub></mml:math> conformal resonators.	1.0	19
125	Optics Communications, 2017, 402, 518-522. Transparent absorption-diffusion-integrated water-based all-dielectric metasurface for broadband backward scattering reduction. Journal Physics D: Applied Physics, 2018, 51, 485301.	1.3	19
126	Tailoring Circular Dichroism in an Isomeric Manner: Complete Control of Amplitude and Phase for Highâ€Quality Hologram and Beam Forming. Advanced Optical Materials, 2022, 10, .	3.6	19

#	Article	IF	Citations
127	Achieving all-dielectric left-handed metamaterials via single-sized dielectric resonators. Journal of Applied Physics, 2012, 111, 044903.	1.1	18
128	Enhancing isolation of antenna arrays by simultaneously blocking and guiding magnetic field lines using magnetic metamaterials. Applied Physics Letters, $2016,109,109$	1.5	18
129	Retro-reflective metasurfaces for backscattering enhancement under oblique incidence. AIP Advances, 2017, 7, .	0.6	18
130	Fast switching soluble electrochromic polymers obtained from a 4,9-Dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-embedded system. Synthetic Metals, 2018, 242, 29-36.	2.1	18
131	Multi-Beam Metasurface Antenna by Combining Phase Gradients and Coding Sequences. IEEE Access, 2019, 7, 62087-62094.	2.6	18
132	Controllable Reflection-Enhancement Metasurfaces via Amplification Excitation of Transistor Circuit. IEEE Transactions on Antennas and Propagation, 2021, 69, 1477-1482.	3.1	18
133	Broadband planar achromatic anomalous reflector based on dispersion engineering of spoof surface plasmon polariton. Applied Physics Letters, 2016, 109, .	1.5	17
134	Dispersion engineering of metasurfaces for supporting both TM and TE spoof surface plasmon polariton. Journal Physics D: Applied Physics, 2018, 51, 045109.	1.3	17
135	An FSS-Backed Dual-Band Reflective Polarization Conversion Metasurface. IEEE Access, 2019, 7, 104435-104442.	2.6	17
136	A Broadband Wide-Angle Synthetical Absorber Designed by Topology Optimization of Resistance Surface and Metal Wires. IEEE Access, 2019, 7, 142675-142681.	2.6	17
137	Synthetic design for a microwave absorber and antireflection to achieve wideband scattering reduction. Journal Physics D: Applied Physics, 2019, 52, 035103.	1.3	17
138	Multiple working mechanism metasurface with high optical transparency, low infrared emissivity and microwave reflective reduction. Infrared Physics and Technology, 2020, 111, 103524.	1.3	17
139	Circularly Polarized Spinâ€Selectivity Absorbing Coding Phase Gradient Metasurface for RCS Reduction. Advanced Theory and Simulations, 2020, 3, 1900217.	1.3	17
140	Multidimensionally Manipulated Active Coding Metasurface by Merging Pancharatnam–Berry Phase and Dynamic Phase. Advanced Optical Materials, 2021, 9, 2100484.	3.6	17
141	ULTRA-WIDE-BAND MICROWAVE COMPOSITE ABSORBERS BASED ON PHASE GRADIENT METASURFACES. Progress in Electromagnetics Research M, 2014, 40, 9-18.	0.5	16
142	Integrating absorber with non-planar plasmonic structure for $\langle i \rangle k \langle i \rangle$ -vector matching absorption enhancement. Journal of Applied Physics, 2018, 124, .	1.1	16
143	A frequency-scanning antenna based on hybridization of the quasi-TEM mode and spoof surface plasmon polaritons mode. Journal Physics D: Applied Physics, 2019, 52, 38LT01.	1.3	16
144	Compact High-Efficiency Resonator Antennas Based on Dispersion Engineering of Even-Mode Spoof Surface Plasmon Polaritons. IEEE Transactions on Antennas and Propagation, 2020, 68, 2557-2564.	3.1	16

#	Article	IF	CITATIONS
145	Achieving broadband RCS reduction using carbon fiber connected composite via scattering mechanism. Composites Science and Technology, 2020, 200, 108410.	3.8	16
146	Wideband planar retro-reflective metasurfaces for backscattering enhancement under oblique incidence. Journal Physics D: Applied Physics, 2018, 51, 335103.	1.3	15
147	Achieving circular-to-linear polarization conversion and beam deflection simultaneously using anisotropic coding metasurfaces. Scientific Reports, 2019, 9, 12264.	1.6	15
148	Efficient orbital angular momentum vortex beam generation by generalized coding metasurface. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	15
149	Synthetical dispersion engineering in plasmonic metamaterial absorber for broadband absorption enhancement. Journal Physics D: Applied Physics, 2019, 52, 085103.	1.3	15
150	Dualâ€band miniaturised FSS with stable resonance frequencies of 3.4/4.9 GHz for 5G communication systems applications. IET Microwaves, Antennas and Propagation, 2020, 14, 1-6.	0.7	15
151	Tunable Frequency Selective Surface With Angular Stability. IEEE Antennas and Wireless Propagation Letters, 2021, 20, 1108-1112.	2.4	15
152	Multifunctional ultra-thin metasurface with low infrared emissivity, microwave absorption and high optical transmission. Optics Communications, 2021, 500, 127327.	1.0	15
153	Wave-shape-keeping media. Optics Letters, 2009, 34, 127.	1.7	14
154	High-efficiency polarization conversion based on spatial dispersion modulation of spoof surface plasmon polaritons. Optics Express, 2016, 24, 24938.	1.7	14
155	Polarization and angle insensitive dual-band bandpass frequency selective surface using all-dielectric metamaterials. Journal of Applied Physics, 2016, $119, \ldots$	1.1	14
156	Highlyâ€selective, closelyâ€spaced, dualâ€band FSS with secondâ€order characteristic. IET Microwaves, Antennas and Propagation, 2016, 10, 1087-1091.	0.7	14
157	Ultra-thin and -broadband microwave magnetic absorber enhanced by phase gradient metasurface incorporation. Journal Physics D: Applied Physics, 2018, 51, 215001.	1.3	14
158	Design of Frequency Selective Surface Based on Spoof Surface Plasmon Polariton Modes. IEEE Antennas and Wireless Propagation Letters, 2018, 17, 1123-1126.	2.4	14
159	Three-Dimensional Resistive Metamaterial Absorber Loaded with Metallic Resonators for the Enhancement of Lower-Frequency Absorption. Materials, 2018, 11, 210.	1.3	14
160	Ultra-wideband side-lobe level suppression using amplitude-adjustable metasurfaces. Journal Physics D: Applied Physics, 2019, 52, 065102.	1.3	14
161	Extraordinary transmission of electromagnetic waves through sub-wavelength slot arrays mediated by spoof surface plasmon polaritons. Applied Physics Letters, 2016, 108, 194101.	1.5	14
162	Microwave-infrared compatible stealth via high-temperature frequency selective surface upon Al2O3-TiC coating. Journal of Alloys and Compounds, 2022, 920, 165977.	2.8	14

#	Article	IF	Citations
163	Single-Layer Achiral Metasurface with Independent Amplitude–Phase Control for Both Left-Handed and Right-Handed Circular Polarizations. ACS Applied Materials & Enterfaces, 2022, 14, 33968-33975.	4.0	14
164	Design of Super-Thin Cloaks With Arbitrary Shapes using Interconnected Patches. IEEE Transactions on Antennas and Propagation, 2015, 63, 384-389.	3.1	13
165	Origami-inspired building block and parametric design for mechanical metamaterials. Journal Physics D: Applied Physics, 2016, 49, 315302.	1.3	13
166	High-efficiency real-time waveform modulator for free space waves based on dispersion engineering of spoof surface plasmon polaritons. Journal Physics D: Applied Physics, 2017, 50, 215104.	1.3	13
167	Ultra-broadband co-polarization anomalous reflection metasurface. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	13
168	Design of a Self-Complementary Frequency Selective Surface With Multi-Band Polarization Separation Characteristic. IEEE Access, 2019, 7, 36788-36799.	2.6	13
169	A thermally tunable THz metamaterial frequency-selective surface based on barium strontium titanate thin film. Journal Physics D: Applied Physics, 2019, 52, 045301.	1.3	13
170	Al2O3 based ceramic with polarization controlled meta-structure for high-temperature broadband backward scattering manipulation. Journal of Alloys and Compounds, 2021, 854, 157168.	2.8	13
171	Chiral Absorber-Based Frequency Selective Rasorber With Identical Filtering Characteristics for Distinct Polarizations. IEEE Transactions on Antennas and Propagation, 2022, 70, 3506-3514.	3.1	13
172	A broad-band three-dimensional isotropic left-handed metamaterial. Journal Physics D: Applied Physics, 2009, 42, 155413.	1.3	12
173	A single layer ultra-miniaturized FSS operating in VHF. Photonics and Nanostructures - Fundamentals and Applications, 2015, 17, 1-9.	1.0	12
174	Spoof surface plasmon polaritons excitation and wavefront control by Pancharatnam–Berry phase manipulating metasurface. Journal Physics D: Applied Physics, 2018, 51, 215302.	1.3	12
175	Multifieldâ€Inspired Tunable Carrier Effects Based on Ferroelectricâ€Silicon PN Heterojunction. Advanced Electronic Materials, 2020, 6, 1900795.	2.6	12
176	Wideband Absorbing Plasmonic Structures via Profile Optimization Based on Genetic Algorithm. Frontiers in Physics, 2020, 8, .	1.0	12
177	Broadband Surface Waves Couplers With Adjustable Excitation Modes and Controllable Wavefront Directions Utilizing Integrated Pancharatnam–Berry Phase Gradient Metasurfaces. IEEE Transactions on Antennas and Propagation, 2021, 69, 7698-7708.	3.1	12
178	Near-Omnidirectional Broadband Metamaterial Absorber for TM-Polarized Wave Based on Radiation Pattern Synthesis. IEEE Transactions on Antennas and Propagation, 2022, 70, 420-429.	3.1	12
179	Machine-learning-empowered multispectral metafilm with reduced radar cross section, low infrared emissivity, and visible transparency. Photonics Research, 2022, 10, 1146.	3.4	12
180	The compatible method of designing the transparent ultra-broadband radar absorber with low infrared emissivity. Infrared Physics and Technology, 2022, 123, 104114.	1.3	12

#	Article	IF	CITATIONS
181	Two-dimensional QR-coded metamaterial absorber. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	11
182	All-dielectric metamaterial frequency selective surface. Journal of Advanced Dielectrics, 2017, 07, 1730002.	1.5	11
183	Tailoring multi-order absorptions of a Salisbury screen based on dispersion engineering of spoof surface plasmon polariton. Journal Physics D: Applied Physics, 2018, 51, 315103.	1.3	11
184	Ultra-wideband and high-efficiency transparent coding metasurface. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	11
185	Spin-selective corner reflector for retro-reflection and absorption by a circular dichroitic manner. Photonics Research, 2021, 9, 726.	3.4	11
186	Thermally stable ultra-thin and refractory microwave absorbing coating. Ceramics International, 2021, 47, 17337-17344.	2.3	11
187	Area-transformation method for designing invisible cloaks. Journal of Applied Physics, 2010, 108, 073108.	1.1	10
188	Broadband circulator based on spoof surface plasmon polaritons. Journal Physics D: Applied Physics, 2016, 49, 355002.	1.3	10
189	A novel miniaturized dual-stop-band FSS for Wi-Fi application. , 2016, , .		10
190	High-efficiency tri-band quasi-continuous phase gradient metamaterials based on spoof surface plasmon polaritons. Scientific Reports, 2017, 7, 40727.	1.6	10
191	Reducing reflection of bandpass frequency selective surface using checkerboard surface. Journal Physics D: Applied Physics, 2018, 51, 365103.	1.3	10
192	Lightweight ultra-wideband radar cross section reduction structure using double-layer metasurfaces. Journal Physics D: Applied Physics, 2019, 52, 115103.	1.3	10
193	Multi-octave radar cross section reduction via integrated dispersion engineering of polarization-conversion metasurface and metamaterial absorber. Journal Physics D: Applied Physics, 2020, 53, 03LT01.	1.3	10
194	Transmission–absorption integrated structure via dispersion engineering of spoof surface plasmon polariton and frequency-selective surface. Journal Physics D: Applied Physics, 2020, 53, 085001.	1.3	10
195	Compatible stealth design of infrared and radar based on plasmonic absorption structure. Optics Express, 2021, 29, 28767.	1.7	10
196	Synthesized optimal design via Parallel Genetic Algorithm of multispectral metasurfaces with ultra-wideband microwave absorption, low infrared emissivity and visible transparency. Infrared Physics and Technology, 2021, 117, 103826.	1.3	10
197	Study on Microwave Absorption Performance Enhancement of Metamaterial/Honeycomb Sandwich Composites in the Low Frequency Band. Polymers, 2022, 14, 1424.	2.0	10
198	Numerical method of designing three-dimensional open cloaks with arbitrary boundary shapes. Photonics and Nanostructures - Fundamentals and Applications, 2010, 8, 205-208.	1.0	9

#	Article	IF	CITATIONS
199	Broadband three-dimensional diamond-shaped invisible cloaks composed of tetrahedral homogeneous blocks. Journal Physics D: Applied Physics, 2010, 43, 305501.	1.3	9
200	Optical transparent infrared high absorption metamaterial absorbers. Journal of Advanced Dielectrics, 2018, 08, 1850007.	1.5	9
201	Independent excitation of spoof surface plasmon polaritons for orthogonal linear polarized incidences. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	9
202	Origami-Based Metamaterials for Dynamic Control of Wide-Angle Absorption in a Reconfigurable Manner. IEEE Transactions on Antennas and Propagation, 2022, 70, 4558-4568.	3.1	9
203	Generating diverse functionalities simultaneously and independently for arbitrary linear polarized illumination enabled by a chiral transmission-reflection-selective bifunctional metasurface. Optics Express, 2022, 30, 7124.	1.7	9
204	Ferroelectric composite artificially-structured functional material: multifield control for tunable functional devices. Journal Physics D: Applied Physics, 2022, 55, 303002.	1.3	9
205	Using photon funnels based on metamaterial cloaks to compress electromagnetic wave beams. Applied Optics, 2008, 47, 4193.	2.1	8
206	Three-dimensional invisible cloaks with arbitrary shapes based on partial differential equation. Applied Mathematics and Computation, 2010, 216, 426-430.	1.4	8
207	Broadband infrared metamaterial absorber based on anodic aluminum oxide template. Optics and Laser Technology, 2018, 101, 177-182.	2.2	8
208	Wide-Angle Transmission Enhancement of Metamaterial-Doped Fiber-Reinforced Polymers. IEEE Access, 2019, 7, 76042-76048.	2.6	8
209	Extraordinary spoof surface plasmon polaritons excitation by linear and circular polarization conversions phase gradient metasurface. Journal Physics D: Applied Physics, 2020, 53, 045003.	1.3	8
210	Design of 3D broad-band and wide-angle absorber based on resistive metamaterial and magnetic absorbing material. Journal Physics D: Applied Physics, 2020, 53, 095304.	1.3	8
211	Genetic-algorithm-empowered metasurface design: simultaneous realization of high microwave frequency-selection and low infrared surface-emissivity. Optics Express, 2021, 29, 20150.	1.7	8
212	Polarization-independent multi-channel retroreflective metasurfaces based on extraordinary optical diffraction. Optics Express, 2020, 28, 37276.	1.7	8
213	Multistage dispersion engineering in a three-dimensional plasmonic structure for outstanding broadband absorption. Optical Materials Express, 2019, 9, 1539.	1.6	8
214	Experimental Verification of Anisotropic Three-dimensional Left-handed Metamaterial Composed of Jerusalem Crosses. Progress in Electromagnetics Research Symposium: [proceedings] Progress in Electromagnetics Research Symposium, 2010, 6, 31-35.	0.4	8
215	Polarization Reconfigurable and Beam-Switchable Array Antenna Using Switchable Feed Network. IEEE Access, 2022, 10, 29032-29039.	2.6	8
216	Transparent metasurface for wideband backward scattering reduction with synthetic optimization algorithm. Journal Physics D: Applied Physics, 2022, 55, 275002.	1.3	8

#	Article	IF	Citations
217	2D achromatic flat focusing lens based on dispersion engineering of spoof surface plasmon polaritons: broadband and profile-robust. Journal Physics D: Applied Physics, 2018, 51, 045108.	1.3	7
218	Ultra-wideband microwave absorber via an integrated metasurface and impedance-matching lattice design. Journal Physics D: Applied Physics, 2019, 52, 31LT01.	1.3	7
219	Miniaturized suspended strip-line bandpass filter based on spoof surface plasmon polaritons. Journal Physics D: Applied Physics, 2019, 52, 325101.	1.3	7
220	Integrated design of single-layer multispectral metasurface with broadband microwave polarization rotation and low infrared emissivity. Infrared Physics and Technology, 2020, 111, 103546.	1.3	7
221	Multiâ€functional sandwich structure with metamaterial antenna lattice cores: protection, radiation and absorption. IET Microwaves, Antennas and Propagation, 2020, 14, 593-599.	0.7	7
222	A Frequency Selective Rasorber by Engineering Transverse Standing Waves of Surface Current. IEEE Access, 2021, 9, 51703-51709.	2.6	7
223	Composite Frequency Selective Structure With the Integrated Functionality of Transmission, Absorption, and Scattering. IEEE Antennas and Wireless Propagation Letters, 2021, 20, 1819-1823.	2.4	7
224	Multi-domain functional metasurface with selectivity of polarization in operation frequency and time. Journal Physics D: Applied Physics, 2020, 53, 495003.	1.3	7
225	Design of Aperture-Multiplexing Metasurfaces via Back-Propagation Neural Network: Independent Control of Orthogonally-Polarized Waves. IEEE Transactions on Antennas and Propagation, 2022, 70, 4569-4575.	3.1	7
226	Ultra-wideband RCS reduction based on coupling effects between beam diffuse and absorptive structures. Optics Express, 2022, 30, 3820.	1.7	7
227	Multifrequency super-thin cloaks. Photonics and Nanostructures - Fundamentals and Applications, 2014, 12, 130-137.	1.0	6
228	Magnetically tunable unidirectional waveguide based on magnetic photonic crystals. Applied Physics Letters, 2016, 109, .	1.5	6
229	Isolation enhancement of patch antenna array via metamaterial integration. Microwave and Optical Technology Letters, 2016, 58, 2321-2325.	0.9	6
230	Broadband aberration-free focusing reflector for acoustic waves. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 3599-3603.	0.9	6
231	Goos–HÃ ¤ chen shift in metallic gratings assisted by phase gradient metasurfaces. Materials Research Express, 2018, 5, 125802.	0.8	6
232	A circular-polarized metasurface planar reflector antenna based on Pancharatnam–Berry phase. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	6
233	Overcoming the Pixel-Density Limit in Plasmonic Absorbing Structure for Broadband Absorption Enhancement. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 674-678.	2.4	6
234	Obtaining single mode spoof surface plasmon polaritons under circular polarized incidence. Journal Physics D: Applied Physics, 2020, 53, 115003.	1.3	6

#	Article	IF	CITATIONS
235	Wideband Absorption at Low Microwave Frequencies Assisted by Magnetic Squeezing in Metamaterials. Frontiers in Physics, 2020, 8, .	1.0	6
236	Centrosymmetric topology optimization design achieves ultra-broadband polarization conversion and its further application. Journal Physics D: Applied Physics, 2020, 53, 335001.	1.3	6
237	Absorptive/transmissive integrated frequency selective structure based on lumped resistance elements. IET Microwaves, Antennas and Propagation, 2020, 14, 159-162.	0.7	6
238	Wide-Angle Frequency Scanning Metasurface Antenna Fed by Spoof Plasmonic Waveguide. IEEE Access, 2020, 8, 103635-103641.	2.6	6
239	Overcome chromatism of metasurface via Greedy Algorithm empowered by self-organizing map neural network. Optics Express, 2020, 28, 35724.	1.7	6
240	Circular dichroism assisted bi-directional absorbers. Journal Physics D: Applied Physics, 2022, 55, 095101.	1.3	6
241	Research of a wide-angle backscattering enhancement metasurface. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 198101.	0.2	6
242	A wideband deflected reflection based on multiple resonances. Applied Physics A: Materials Science and Processing, 2015, 120, 287-291.	1.1	5
243	Broadband band-pass FSS using patch-wire-patch coupled structures. , 2015, , .		5
244	Toward band-stop all-dielectric metamaterial frequency selective surface via dielectric ceramic blocks. , 2016 , , .		5
245	A reflective-backing-free metamaterial absorber with broadband response. Journal of Advanced Dielectrics, 2017, 07, 1750016.	1.5	5
246	Design of triple-band-pass frequency selective structure based on spoof surface plasmon polariton. AIP Advances, 2018, 8, .	0.6	5
247	Design and analysis of multiâ€band polarisation selective metasurface. IET Microwaves, Antennas and Propagation, 2019, 13, 1602-1609.	0.7	5
248	Design of Narrow Pass-band All-dielectric Metamaterial Frequency Selective Surface., 2019, , .		5
249	Plasmonic absorbing structure using horizontal bent-wire array for low-frequency absorption enhancement. Optics Communications, 2019, 443, 90-95.	1.0	5
250	A three-dimensional frequency selective structure based on the modes coupling of spoof surface plasmon and waveguide transmission. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126103.	0.9	5
251	Multi-Spectral Metasurface With High Optical Transparency, Low Infrared Surface Emissivity, and Wideband Microwave Absorption. Frontiers in Physics, 2020, 8, .	1.0	5
252	Suppressing Edge Back-Scattering of Electromagnetic Waves Using Coding Metasurface Purfle. Frontiers in Physics, 2020, 8, .	1.0	5

#	Article	IF	CITATIONS
253	Bispectral Circular Dichroic Coding Metasurfaces. Annalen Der Physik, 2020, 532, 1900496.	0.9	5
254	Metasurface design by a Hopfield network: finding a customized phase response in a broadband. Journal Physics D: Applied Physics, 2020, 53, 415001.	1.3	5
255	Composite metasurface merging frequency selective surface and coding sequences for electromagnetic transmission–diffusion. Journal Physics D: Applied Physics, 2021, 54, 235304.	1.3	5
256	Ultra wide-angle and broad-band metamaterial absorber based on magneto-electric dipole structure. Journal Physics D: Applied Physics, 2021, 54, 335102.	1.3	5
257	Four-function metasurface based on a tri-band integrated meta-atom for full space control of circularly polarized waves. Optics Express, 2021, 29, 42569.	1.7	5
258	Design of scene-adaptive infrared camouflage emitter based on Au-VO2-Al2O3-Au metamaterials. Optics Communications, 2022, 512, 128016.	1.0	5
259	Design and analysis of a wideband and wide angle 3D metamaterial absorber. Journal Physics D: Applied Physics, 2022, 55, 325302.	1.3	5
260	Manipulating the reflection of electromagnetic waves using reflective metasurfaces. , 2014, , .		4
261	Broadband abnormal reflection based on a metal-backed gradient index liquid slab: an alternative to metasurfaces. Journal Physics D: Applied Physics, 2015, 48, 245501.	1.3	4
262	All-dielectric metamaterial frequency selective surface based on spatial arrangement ceramic resonators. Journal of Advanced Dielectrics, 2017, 07, 1750009.	1.5	4
263	Circulation of spoof surface plasmon polaritons: Implementation and verification. AIP Advances, 2018, 8, 055002.	0.6	4
264	Multiform frequency selective surfaces optimal design based on topology optimization. International Journal of RF and Microwave Computer-Aided Engineering, 2019, 29, e21491.	0.8	4
265	Achieving Broadband Spinâ€Correlated Asymmetric Reflection Using a Circular Dichroitic Metaâ€Mirror. Annalen Der Physik, 2021, 533, 2000515.	0.9	4
266	Orbital angular momentum generator with multiple retroreflection channels enabled by an angle-selective metasurface. Optics Express, 2021, 29, 25022.	1.7	4
267	Broadband surface wave coupler with low infrared emission and microwave reflection. Optics Express, 2021, 29, 35490.	1.7	4
268	Polarization-independent quadri-channel vortex beam generator based on transmissive coding metasurface. OSA Continuum, 0, , .	1.8	4
269	Magnetic monopole-like response in metamaterials. Photonics and Nanostructures - Fundamentals and Applications, 2014, 12, 429-436.	1.0	3
270	A novel miniaturized microstrip patch antenna based on metamaterial unit., 2015,,.		3

#	Article	IF	Citations
271	Wideband Coding metasurfaces based on low Q resonators. Optics Communications, 2019, 430, 189-194.	1.0	3
272	Design and analysis of dual-band polarization-selective metasurface. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	3
273	Absorption-transmission-integrated frequency selective structure based on spoof surface plasmon polariton modes. Journal Physics D: Applied Physics, 2019, 52, 155103.	1.3	3
274	Emulating nonreciprocity via direction-dependent excitation of spoof surface plasmon polaritons. Journal Physics D: Applied Physics, 2020, 53, 015113.	1.3	3
275	Countering Single-Polarization Radar Based on Polarization Conversion Metamaterial. IEEE Access, 2020, 8, 206783-206789.	2.6	3
276	Fullâ€Polarization Frequency Controlled Multimode Spoof Surface Plasmon Polaritons Excitation via Anisotropic Metastructure. Advanced Optical Materials, 2022, 10, .	3.6	3
277	Generation of stable bright pulse and the dark soliton interaction in nonlinear left-handed materials. Applied Physics A: Materials Science and Processing, 2012, 109, 477-480.	1.1	2
278	Polarization insensitive metamaterial absorber based on E-shaped all-dielectric structure. Journal of Advanced Dielectrics, 2015, 05, 1550009.	1.5	2
279	Linear-to-linear high directional antenna using transmission polarization metasurface. , 2016, , .		2
280	All-dielectric metamaterial band stop frequency selective surface via high-permittivity ceramics. , 2016, , .		2
281	Methods for designing allâ€dielectric frequency selective surface via dielectric materials. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700168.	0.8	2
282	Design of an absorption–transmission-integrated frequency selective surface using a waveguide array. AIP Advances, 2018, 8, 095024.	0.6	2
283	Anisotropic transmissive coding metamaterials based on dispersion modulation of spoof surface plasmon polaritons. Journal Physics D: Applied Physics, 2018, 51, 245104.	1.3	2
284	Preparation and Ablation Properties of W/TaC Cermet via in-situ Reaction Sintering Process. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 431-436.	0.4	2
285	Reducing Cross-talk Between Two Patch Antennas Using Integrated Electric Metamaterials., 2019,,.		2
286	A hybrid encoding method for frequency selective surface optimization design with angular stability property. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	2
287	Tunable spoof surface plasmon polariton transmission line based on ferroelectric thick film. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	2
288	Metamaterial anti-reflection lining for enhancing transmission of high-permittivity plate. Journal Physics D: Applied Physics, 2019, 52, 03LT01.	1.3	2

#	Article	IF	Citations
289	Malposed spoof surface plasmon structure with enhanced microwave absorption and compressive performances realized by carbon-based foams. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 262, 114787.	1.7	2
290	Spoof surface plasmon polaritons realized by unidirectional carbon fibers arrays and applications in structure/function integrated sandwich structure. Results in Physics, 2020, 17, 103081.	2.0	2
291	Stable permittivity and low loss Al2O3 ceramic based metasurface achieves broadband polarization conversion at high temperature. Ceramics International, 2021, 47, 7268-7271.	2.3	2
292	An FSS-backed reflective polarization conversion meta-surface for radar stealth. Photonics and Nanostructures - Fundamentals and Applications, 2021, 43, 100846.	1.0	2
293	Broadband Anomalous Refractor Based on Dispersion Engineering of Spoof Surface Plasmon Polaritons. IEEE Transactions on Antennas and Propagation, 2021, 69, 3050-3055.	3.1	2
294	A transgenic genetic algorithm design method that helps to increase the design freedom of metasurfaces. Journal Physics D: Applied Physics, 2021, 54, 135001.	1.3	2
295	Synergy of absorbing and diffusing for RCS reduction using spin-selective coding metasurfaces. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	2
296	Feasible strategy for simultaneously achieving excellent frequency selective characteristic and ultralight mechanical properties. Optics Express, 2022, 30, 4492.	1.7	2
297	Tailoring standing waves on meta-atom: a facile way to a high-efficiency functional metasurface with spin-selectivity. Optical Materials Express, 2022, 12, 1271.	1.6	2
298	Quasi-omnibearing retro-reflective metagrating protected by reciprocity. Photonics Research, 0, , .	3.4	2
299	Transmission enhancement of a half-wave wall under extreme angles by synergy of double lorentz resonances. Optics Express, 2022, 30, 13745.	1.7	2
300	Dual-polarization multi-angle retroreflective metasurface with bilateral transmission windows. Optics Express, 0, , .	1.7	2
301	Large-angle broadband transmission of electromagnetic waves through dielectric plates by embedding meta-atoms. Optics Express, 2022, 30, 27497.	1.7	2
302	Comment on "Superwide-band negative refraction of a symmetrical E-shaped metamaterial with two electromagnetic resonances― Physical Review E, 2010, 81, 048602.	0.8	1
303	An all-metal route to broadband low-loss electromagnetic cloaks. Journal Physics D: Applied Physics, 2011, 44, 315501.	1.3	1
304	Wide-angle and polarization-independent three-dimensional magnetic metamaterials with and without substrates. Journal Physics D: Applied Physics, 2011, 44, 135002.	1.3	1
305	Interaction of two dark solitons in nonlinear left-handed materials. Optik, 2012, 123, 1597-1600.	1.4	1
306	Extremely sub-wavelength magnetic metamaterials without using lumped elements. , 2014, , .		1

#	Article	IF	CITATIONS
307	A transmit/reflect switchable frequency selective surface based on all dielectric metamaterials. Journal of Advanced Dielectrics, 2015, 05, 1550035.	1.5	1
308	Ultra-wideband polarization conversion metasurface based on topology optimal design and geometry tailor. , 2015, , .		1
309	Fabrication of dual-passband frequency selective surface utilizing complementary structure. , 2015, , .		1
310	Spatial-temporal dispersion engineering of longitudinally coupled spoof surface plasmon polaritons for free-space EM wave modulation. , 2016 , , .		1
311	In-plane focus reflector antennas based on phase gradient metasurface. , 2016, , .		1
312	Suppressing inside-substrate near-field magnetic coupling using SI-SRRs for the patch antenna arrays. , 2016, , .		1
313	Directional broadband absorption using three-dimensional metamaterials. , 2016, , .		1
314	Decoupling technique of patch antenna arrays with shared substrate by suppressing near-field magnetic coupling using magnetic metamaterials. Chinese Physics B, 2017, 26, 047301.	0.7	1
315	Second-Order Tri-Band Frequency Selective Surface with High Selectivity. , 2018, , .		1
316	Hyperbolic Metasurface at Microwave Frequency for Spoof Surface Plasmon Polaritons., 2018,,.		1
317	Enhancing Backward Scattering Using Metasurfaces. , 2018, , .		1
318	A Reflected Dual-Band High-Efficiency Polarization Conversion Metasurface. , 2018, , .		1
319	Allâ€Dielectric Frequency Selective Surface Based on 3D Printing Materials. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700840.	0.8	1
320	Real-time waveform modulator based on dispersion engineering of magnetic surface plasmons. Journal of Applied Physics, 2018, 123, 245106.	1.1	1
321	Dual-band Multi-beam Antenna via Engineering Mode of Spoof Surface Plasmon Polaritons. , 2019, , .		1
322	Adjustable Dual-frequency FSS-amplifier Metasurface. , 2019, , .		1
323	Groundless Endfire Antennas Based on Spoof Surface Plasmon Polaritons. , 2019, , .		1
324	An extremely wideband and the larger-incident angle three dimensional metamaterial absorber. , 2019, , .		1

#	Article	IF	CITATIONS
325	Passive reconfigurable coding metasurface for broadband manipulation of reflective amplitude, phase and polarization states. Smart Materials and Structures, 2020, 29, 015029.	1.8	1
326	Dualâ€band broadside radiation antenna via nearâ€field electric and magnetic couplings of nested metamaterial resonators. Microwave and Optical Technology Letters, 2020, 62, 3225-3231.	0.9	1
327	Quasi-continuous linear phase-gradient metamaterial based on conformal spoof surface plasmon polaritons. Optics Express, 2021, 29, 8666.	1.7	1
328	Decoupling Patch Antenna Array Using Magnetic Metamaterials., 2021,,.		1
329	Planar multi-angle retro-reflectors based on the wave-vector-reversion of spoof surface plasmon polaritons. Optics Express, 2020, 28, 37236.	1.7	1
330	FSS-Embedded Substrates: A Facile Method of Augmenting Functions of Metasurfaces. Optics Express, 0, , .	1.7	1
331	Metasurface-Loaded Printed Monopole Antenna: Tailoring Impedance for Wideband Radiation. Journal Physics D: Applied Physics, 0, , .	1.3	1
332	A dualâ€stopband FSS using knitted and strongâ€coupled structures with excellent angular stability and polarisation insensitivity. IET Microwaves, Antennas and Propagation, 0, , .	0.7	1
333	Coding Metasurface Design via Intelligence Algorithm. , 2022, , .		1
334	Ultra-band microwave absorber using a composition of phase gradient metasurface and magnetic materials. , 2014, , .		0
335	A second-order band-pass frequency-selective surface using hexagonal aperture coupled patches: Design and validation. , 2014, , .		0
336	A novel beam shaped microstrip patch antenna by metamaterial units. , 2015, , .		0
337	Tunable planar left-handed metamaterials based on split-ring resonator pairs. , 2015, , .		0
338	The thickness resonance of the bandpass frequency selective surface using high-permittivity dielectric materials. , $2016, $, .		0
339	Design of the infrared selective thermal radiation based on metamaterials. , 2016, , .		0
340	Magnetically tunable ferrite-loaded waveguide isolator based on magnetic photonic crystals. , 2016, , .		0
341	Achieving fishnet all-dielectric left-handed metamaterial via high permittivity ceramics. , 2016, , .		0
342	WLAN band-notched planar UWB antenna loaded by CSRR. , 2016, , .		0

#	Article	IF	CITATIONS
343	The realization of circulation performance using reciprocal metamaterial in free space. , 2016, , .		0
344	Decoupling of antennas array using integrated closed chip loop structure., 2016,,.		0
345	Research of a circulator based on spoof surface plasmon polaritons. , 2016, , .		0
346	Convoluted element frequency selective surface with miniaturization and wideband response. , 2016, , .		0
347	Toward Abnormal Reflection by Ceramic Based All-Radient Gradient Metasurface. , 2018, , .		0
348	Ultra-Thin Light-Weight Spoof Surface Plasmon Polariton Couplers Based on Broadside Coupled Split Ring Resonators., 2018,,.		0
349	High-Efficiency Real-Time Reflective Waveform Modulator Based on Dispersion Engineering of Spoof Surface Plasmon Polaritons., 2018,,.		0
350	Fast Design of Polarization Independent Metasurfaces for Shaping Electromagnetic Waves., 2018,,.		0
351	All-Dielectric Frequency Selective Surface Based on 3D Printing Materials (Phys. Status Solidi A) Tj ETQq1 1 0.78	4314 rgBT 0.8	/Oyerlock 10
352	Frequency selective polarization conversion metasurface using E-shaped high permittivity ceramics., 2018,,.		0
353	Hybrid metamaterial absorber based on the combination of plasmonic structure and magentic absorber. , 2019, , .		0
354	eWideband transmission enhancement of electromagnetic waves through high-permittivity ceramics via magnetic metamaterial films. Materials Research Express, 2019, 6, 115805.	0.8	0
355	Flexible Controls of Radar Cross Section based on Coding Metasurface with Varactors., 2019,,.		0
356	Hybrid Metamaterial Absorber based on the Combination of Plasmonic Structure and Magentic Absorber. , 2019, , .		0
357	Dual-Band RCS Reduction Metamaterials Based on Combining Structures. , 2019, , .		0
358	Frequency Tunable Filter Patch Antenna Based on Spoof Surface Plasmon Polaritons., 2019,,.		0
359	Polarization Conversion Abnormal Reflection by All-dielectric Phase Gradient Metasurface Based on High-permittivity Ceramic. , $2019, \ldots$		O
360	Linear-to-Circular (LTC) Antenna With Polarization Conversion Metasurface., 2019,,.		0

#	Article	IF	Citations
361	The Asymmetric Transmission Depending on the Propagation Direction Using Spoof Surface Plasmon Polaritons. , 2019, , .		0
362	A Transmittive/Absorptive Frequency Selective Surface by Cascading Multi-layer Square Loops. , 2019, , .		0
363	Coupling-inspired metasurfaces for polarization-correlation customizable absorption. New Journal of Physics, 2021, 23, 093034.	1.2	0
364	Wideband RCS reduction of thin metallic edges mediated by spoof surface plasmon polaritons. EPJ Applied Metamaterials, 2021, 8, 8.	0.8	0
365	Dispersive Brewster effect on dielectrics interfaces modulated by spoof surface plasmon polaritons. Journal Physics D: Applied Physics, 2020, 53, 215003.	1.3	0
366	Wideband side-lobe level suppression metamaterial based on foldable spoof surface plasmon polaritons. Optics Express, 2021, 29, 41333.	1.7	0
367	Coding Metasurface for Radar Cross Section Reduction. , 2020, , .		0
368	Linear Polarization Independent Planar Retro-reflectors Based on Anisotropic Binary Coding Theory. , 2021, , .		0
369	Hybrid Modes Spoof Surface Plasmon Polaritons Excitation and Propagation under Linear Polarized Incidence., 2021,,.		0
370	Radiation-Scattering–Integrated Design of Multi-Functional Metasurfaces Based on Antenna-Embedded Substrates. Frontiers in Materials, 2022, 8, .	1.2	0
371	Spin-to-orbital angular momentum conversion through a coplanar converter. Journal Physics D: Applied Physics, 2022, 55, 185101.	1.3	0
372	The Application of Local Field Enhancement and Spatial Field Matching in All-dielectric Frequency Selective Surface Design., 2021,,.		0
373	Greedy-algorithm-empowered design of wideband achromatic beam deflector based on spoof surface plasmon polariton mode. European Physical Journal Plus, 2022, 137, 1.	1.2	0
374	Active Meta-Device for Dual-Transmission Windows with Tunable Angular Dispersion Characteristics. Materials, 2022, 15, 3686.	1.3	0
375	Single-layer Efficient Broadband Polarization Conversion Metasurface Based on Multiple Plasmon Resonances., 2022,,.		0