Pan He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1029325/publications.pdf Version: 2024-02-01

DAN HE

#	Article	IF	CITATIONS
1	Water‣ubricated Intercalation in V ₂ O ₅ ·nH ₂ O for Highâ€Capacity and Highâ€Rate Aqueous Rechargeable Zinc Batteries. Advanced Materials, 2018, 30, 1703725.	21.0	1,084
2	Layered VS ₂ Nanosheetâ€Based Aqueous Zn Ion Battery Cathode. Advanced Energy Materials, 2017, 7, 1601920.	19.5	961
3	Sodium Ion Stabilized Vanadium Oxide Nanowire Cathode for Highâ€Performance Zincâ€Ion Batteries. Advanced Energy Materials, 2018, 8, 1702463.	19.5	650
4	Graphene Scroll oated αâ€MnO ₂ Nanowires as Highâ€Performance Cathode Materials for Aqueous Znâ€lon Battery. Small, 2018, 14, e1703850.	10.0	563
5	Ultrathin Surface Coating Enables Stabilized Zinc Metal Anode. Advanced Materials Interfaces, 2018, 5, 1800848.	3.7	476
6	Highâ€Performance Aqueous Zinc–Ion Battery Based on Layered H ₂ V ₃ O ₈ Nanowire Cathode. Small, 2017, 13, 1702551.	10.0	455
7	Ultrastable and High-Performance Zn/VO ₂ Battery Based on a Reversible Single-Phase Reaction. Chemistry of Materials, 2019, 31, 699-706.	6.7	227
8	Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries. Chemical Communications, 2018, 54, 4041-4044.	4.1	167
9	Building better zinc-ion batteries: A materials perspective. EnergyChem, 2019, 1, 100022.	19.1	153
10	Quicker and More Zn ²⁺ Storage Predominantly from the Interface. Advanced Materials, 2021, 33, e2100359.	21.0	111
11	Detrimental Effects of Surface Imperfections and Unpolished Edges on the Cycling Stability of a Zinc Foil Anode. ACS Energy Letters, 2021, 6, 1990-1995.	17.4	89
12	Reversible V3+/V5+ double redox in lithium vanadium oxide cathode for zinc storage. Energy Storage Materials, 2020, 29, 113-120.	18.0	85
13	Chemical Passivation Stabilizes Zn Anode. Advanced Materials, 2022, 34, e2109872.	21.0	81
14	Facile and Scalable Synthesis of Zn ₃ V ₂ O ₇ (OH) ₂ ·2H ₂ O Microflowers as a High-Performance Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 27707-27714.	8.0	48
15	Porous nitrogen-doped carbon/MnO coaxial nanotubes as an efficient sulfur host for lithium sulfur batteries. Nano Research, 2019, 12, 205-210.	10.4	39
16	Oxalate-assisted formation of uniform carbon-confined SnO ₂ nanotubes with enhanced lithium storage. Chemical Communications, 2017, 53, 9542-9545.	4.1	22
17	Novel hollow Ni0.33Co0.67Se nanoprisms for high capacity lithium storage. Nano Research, 2019, 12, 1371-1374.	10.4	22
18	Constructing Three-Dimensional Macroporous TiO ₂ Microspheres with Enhanced Pseudocapacitive Lithium Storage under Deep Discharging/Charging Conditions. ACS Applied Materials & Interfaces, 2021, 13, 16528-16535.	8.0	7

	ш	-
Pan		E

#	Article	IF	CITATIONS
19	Self-Charging Textile Woven from Dissimilar Household Fibers for Air Filtration: A Proof of Concept. ACS Omega, 2021, 6, 26311-26317.	3.5	3