Majad Khan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10292659/publications.pdf

Version: 2024-02-01

23 papers	1,056 citations	16 h-index	677142 22 g-index
23	23	23	1912
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Optical Chemical Sensing of Iodide Ions: A Comprehensive Review for the Synthetic Strategies of Iodide Sensing Probes, Challenges, and Future Aspects. Chemical Record, 2022, 22, e202200059.	5.8	13
2	Engineered Nanoscale Singleâ€Metalâ€Oxides Catalytic Thin Films for Highâ€Performance Water Oxidation. Energy Technology, 2021, 9, 2000896.	3.8	5
3	Enhanced Filtration Characteristics and Reduced Bacterial Attachment for Reverse Osmosis Membranes Modified by a Facile Method. ACS ES&T Water, 2021, 1, 1136-1144.	4.6	9
4	Enhanced Antimicrobial Activity of Biofunctionalized Zirconia Nanoparticles. ACS Omega, 2020, 5, 1987-1996.	3.5	71
5	Nobleâ∈Metalâ∈Free Colloidalâ∈Copper Based Low Overpotential Water Oxidation Electrocatalyst. ChemCatChem, 2019, 11, 6022-6030.	3.7	22
6	Sensitization of Cancer Cells via Non-Viral Delivery of Apoptosis Inducing Proteins Using a Cationic Bolaamphiphile. Biotechnology Journal, 2019, 14, 1800020.	3.5	0
7	Antimicrobial coatings against biofilm formation: the unexpected balance between antifouling and bactericidal behavior. Polymer Chemistry, 2016, 7, 656-668.	3.9	44
8	Antimicrobial/Antifouling Polycarbonate Coatings: Role of Block Copolymer Architecture. Macromolecules, 2015, 48, 1055-1064.	4.8	68
9	CATIONIC BOLAAMPHIPHILES FOR GENE DELIVERY. Cosmos, 2014, 10, 25-38.	0.4	1
10	Supramolecular nanoparticle carriers self-assembled from cyclodextrin- and adamantane-functionalized polyacrylates for tumor-targeted drug delivery. Journal of Materials Chemistry B, 2014, 2, 1879.	5.8	73
11	Rationally Designed αâ€Helical Broadâ€Spectrum Antimicrobial Peptides with Idealized Facial Amphiphilicity. Macromolecular Rapid Communications, 2013, 34, 74-80.	3.9	66
12	Delivery of reprogramming factors into fibroblasts for generation of non-genetic induced pluripotent stem cells using a cationic bolaamphiphile as a non-viral vector. Biomaterials, 2013, 34, 5336-5343.	11.4	48
13	Advanced Materials for Coâ€Delivery of Drugs and Genes in Cancer Therapy. Advanced Healthcare Materials, 2012, 1, 373-392.	7.6	123
14	Diaminododecane-based cationic bolaamphiphile as a non-viral gene delivery carrier. Biomaterials, 2012, 33, 4673-4680.	11.4	44
15	Oligomerized alpha-helical KALA peptides with pendant arms bearing cell-adhesion, DNA-binding and endosome-buffering domains as efficient gene transfection vectors. Biomaterials, 2012, 33, 6284-6291.	11.4	20
16	Nanostructured PEG-based hydrogels with tunable physical properties for gene delivery to human mesenchymal stem cells. Biomaterials, 2012, 33, 6533-6541.	11.4	47
17	The effect of thiol functional group incorporation into cationic helical peptides on antimicrobial activities and spectra. Biomaterials, 2011, 32, 9100-9108.	11.4	63
18	Branched Disulfide-Based Polyamidoamines Capable of Mediating High Gene Transfection. Current Pharmaceutical Design, 2010, 16, 2341-2349.	1.9	7

#	ARTICLE	IF	CITATION
19	Complexes for Efficient Gene Transfection. Macromolecular Rapid Communications, 2010, 31, 1142-1147.	3.9	10
20	Pt nanoparticle label-mediated deposition of Pt catalyst for ultrasensitive electrochemical immunosensors. Biosensors and Bioelectronics, 2010, 26, 418-423.	10.1	62
21	Selfâ€assembled Cationic Peptide Nanoparticles Capable of Inducing Efficient Gene Expression In Vitro. Advanced Functional Materials, 2008, 18, 943-951.	14.9	67
22	Cationic micelles self-assembled from cholesterol-conjugated oligopeptides as an efficient gene delivery vector. Biomaterials, 2008, 29, 4838-4846.	11.4	89
23	Hyperbranched Polyglycidol on Si/SiO2Surfaces via Surface-Initiated Polymerization. Macromolecules, 2003, 36, 5088-5093.	4.8	104