

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1028850/publications.pdf Version: 2024-02-01

lie Fu

#	Article	IF	CITATIONS
1	Stabilization of body-centred cubic iron under inner-core conditions. Nature Geoscience, 2017, 10, 312-316.	5.4	91
2	New metallic carbon: Three dimensionally carbon allotropes comprising ultrathin diamond nanostripes. Carbon, 2018, 126, 601-610.	5.4	36
3	Low viscosity of the Earth's inner core. Nature Communications, 2019, 10, 2483.	5.8	32
4	Free energies of iron phases at high pressure and temperature: Molecular dynamics study. Physical Review B, 2021, 104, .	1.1	18
5	Solute/impurity diffusivities in bcc Fe: A first-principles study. Journal of Nuclear Materials, 2014, 455, 354-359.	1.3	14
6	Improved Finnis-Sinclair potential for vanadium-rich V–Ti–Cr ternary alloys. Journal of Alloys and Compounds, 2017, 705, 369-375.	2.8	14
7	A Gupta potential for magnesium in hcp phase. Computational Materials Science, 2015, 98, 328-332.	1.4	11
8	Gupta potential for rare earth elements of the fcc phase: lanthanum and cerium. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 065003.	0.8	10
9	Chiral Au ₂₂ (SR) ₁₇ ^{â^{^,}} : a new ligand-binding strategy for structural prediction of thiolate-protected gold nanocluster. Chemical Communications, 2020, 56, 2995-2998.	2.2	10
10	Gupta potentials for five HCP rare earth metals. Computational Materials Science, 2016, 112, 75-79.	1.4	6
11	<i>Ab initio</i> molecular dynamics study of fluid H2O-CO2 mixture in broad pressure-temperature range. AIP Advances, 2017, 7, .	0.6	6
12	Artificial neural network potential for gold clusters*. Chinese Physics B, 2020, 29, 117304.	0.7	6
13	Gupta potential for alkaline earth metals: Calcium and strontium. Computational Materials Science, 2014, 85, 142-146.	1.4	4
14	Density and sound velocity of liquid Fe-S alloys at Earth's outer core P-T conditions. American Mineralogist, 2020, 105, 1349-1354.	0.9	4
15	Artificial neural network potential for Au ₂₀ clusters based on the first-principles. Journal of Physics Condensed Matter, 2022, 34, 174005.	0.7	3