Chise Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1028411/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complete Genome Sequence of Lactococcus cremoris Strain 7-1, a Lactic Acid Bacterium Isolated from a Traditional Mongolian Milk Product Possessing Mucin-Adhesive Ability. Microbiology Resource Announcements, 2022, , e0014322.	0.6	0
2	The Effects of Chronic Social Defeat Stress on Solid Gastric Emptying and Defecation in C57BL/6J Mice. Japan Agricultural Research Quarterly, 2021, 55, 77-83.	0.4	1
3	Quantification of Functional Aromatic Amino Acid Metabolites in Fermented Foods and Their Production by Food Microorganisms. Food Science and Technology Research, 2020, 26, 79-92.	0.6	1
4	Comparison of Gut Tight Junction Gene Expression in C57BL/6J and BALB/c Mice After Chronic Social Defeat Stress. Japan Agricultural Research Quarterly, 2019, 53, 41-46.	0.4	5
5	Complete Genome Sequence of Carotenoid-Producing Enterococcus gilvus CR1, Isolated from Raw Cow's Milk. Microbiology Resource Announcements, 2018, 7, .	0.6	5
6	Indole-3-Pyruvic Acid, an Aryl Hydrocarbon Receptor Activator, Suppresses Experimental Colitis in Mice. Journal of Immunology, 2018, 201, 3683-3693.	0.8	103
7	Reduced fucosylation in the distal intestinal epithelium of mice subjected to chronic social defeat stress. Scientific Reports, 2018, 8, 13199.	3.3	10
8	Complete Genome Sequence of Lactobacillus plantarum Strain LQ80, Selected for Preparation of Fermented Liquid Feed for Pigs. Genome Announcements, 2018, 6, .	0.8	1
9	Complete Genome Sequence of Lactococcus lactis subsp. lactis G50 with Immunostimulating Activity, Isolated from Napier Grass. Genome Announcements, 2018, 6, .	0.8	16
10	Complete Genome Sequence of Lactobacillus paracasei EG9, a Strain Accelerating Free Amino Acid Production during Cheese Ripening. Genome Announcements, 2018, 6, .	0.8	2
11	The distinct effects of orally administered Lactobacillus rhamnosus GG and Lactococcus lactis subsp. lactis C59 on gene expression in the murine small intestine. PLoS ONE, 2017, 12, e0188985.	2.5	10
12	Dietary intake of heat-killed Lactococcus lactis H61 delays age-related hearing loss in C57BL/6J mice. Scientific Reports, 2016, 6, 23556.	3.3	20
13	First Complete Genome Sequence of the Skin-Improving Lactobacillus curvatus Strain FBA2, Isolated from Fermented Vegetables, Determined by PacBio Single-Molecule Real-Time Technology. Genome Announcements, 2016, 4, .	0.8	15
14	Omics Studies of the Murine Intestinal Ecosystem Exposed to Subchronic and Mild Social Defeat Stress. Journal of Proteome Research, 2016, 15, 3126-3138.	3.7	67
15	Ethnic Fermented Foods and Alcoholic Beverages of Japan. , 2016, , 193-236.		15
16	Lactobacillus rhamnosus GG increases Toll-like receptor 3 gene expression in murine small intestine ex vivo and in vivo. Beneficial Microbes, 2016, 7, 421-429.	2.4	32
17	Effect of sodium acetate on the adhesion to porcine gastric mucin in a <i>Lactococcus lactis</i> strain grown on fructose. Animal Science Journal, 2016, 87, 802-808.	1.4	0
18	Screening of lactic acid bacteria that can form mixed-species biofilm with <i>Saccharomyces cerevisiae</i> . Bioscience, Biotechnology and Biochemistry, 2015, 79, 681-686.	1.3	9

CHISE SUZUKI

#	Article	IF	CITATIONS
19	New lactic acid bacterial strains from traditional <scp>M</scp> ongolian fermented milk products have altered adhesion to porcine gastric mucin depending on the carbon source. Animal Science Journal, 2015, 86, 325-332.	1.4	10
20	Growth characteristics of Lactobacillus brevis KB290 in the presence of bile. Anaerobe, 2015, 35, 96-101.	2.1	12
21	Altered Superoxide Dismutase Activity by Carbohydrate Utilization in a Lactococcus lactis Strain. Journal of Food Protection, 2014, 77, 1161-1167.	1.7	8
22	Cellular fatty acid composition and exopolysaccharide contribute to bile tolerance in <i>Lactobacillus brevis</i> strains isolated from fermented Japanese pickles. Canadian Journal of Microbiology, 2014, 60, 183-191.	1.7	12
23	Effects of Strains of Lactococcus lactis on the Production of Nitric Oxide and Cytokines in Murine Macrophages. Inflammation, 2014, 37, 1728-1737.	3.8	11
24	Effects of ingesting milk fermented by Lactococcus lactis H61 on skin health in young women: A randomized double-blind study. Journal of Dairy Science, 2014, 97, 5898-5903.	3.4	25
25	Protective Effect of Indole-3-Pyruvate against Ultraviolet B-Induced Damage to Cultured HaCaT Keratinocytes and the Skin of Hairless Mice. PLoS ONE, 2014, 9, e96804.	2.5	22
26	Prevention of UVB-Induced Production of the Inflammatory Mediator in Human Keratinocytes by Lactic Acid Derivatives Generated from Aromatic Amino Acids. Bioscience, Biotechnology and Biochemistry, 2013, 77, 1766-1768.	1.3	14
27	Inhibition of Paenibacillus larvae by lactic acid bacteria isolated from fermented materials. Journal of Invertebrate Pathology, 2013, 112, 62-67.	3.2	44
28	Identification of Antioxidants Produced by <i>Lactobacillus plantarum</i> . Bioscience, Biotechnology and Biochemistry, 2013, 77, 1299-1302.	1.3	44
29	Novel Exopolysaccharides Produced by <i>Lactococcus lactis</i> subsp. <i>lactis</i> , and the Diversity of <i>epsE</i> Genes in the Exopolysaccharide Biosynthesis Gene Clusters. Bioscience, Biotechnology and Biochemistry, 2013, 77, 2013-2018.	1.3	16
30	Immunomodulatory Effects of Lactococcus lactis Strains. Japan Agricultural Research Quarterly, 2013, 47, 249-255.	0.4	4
31	Oral intake of heat-killed cells of <i>Lactococcus lactis</i> strain H61 promotes skin health in women. Journal of Nutritional Science, 2012, 1, e18.	1.9	35
32	Interaction between Lactococcus lactis and Lactococcus raffinolactis during growth in milk: Development of a new starter culture. Journal of Dairy Science, 2012, 95, 2176-2185.	3.4	38
33	A derivative of Lactococcus lactis strain H61 with less interleukin-12 induction has a different cell wall. Journal of Dairy Science, 2012, 95, 2863-2871.	3.4	4
34	Commensal symbiosis between a Lactococcus lactis strain and an Enterococcus mundtii strain increases cell yield in constituted broth. Journal of Dairy Science, 2012, 95, 6372-6378.	3.4	4
35	Relationships between fatty acid composition and bile tolerance in lactobacillus isolates from plants and from non-plant materials. Canadian Journal of Microbiology, 2012, 58, 1396-1404.	1.7	4
36	Effect of oral intake of a Lactococcus lactis strain on skin properties of women ^ ^mdash;a Pilot Study^ ^mdash;. Nihon Chikusan Gakkaiho, 2012, 83, 307-313.	0.2	2

CHISE SUZUKI

#	Article	IF	CITATIONS
37	Lactococcus strains treated with heat and hen-egg-white lysozyme induce abundant interleukin-12 production by J774.1 macrophages and murine spleen cells. Journal of Dairy Science, 2011, 94, 3262-3270.	3.4	2
38	Intraspecies discrimination of Lactobacillus paraplantarum by PCR. FEMS Microbiology Letters, 2011, 316, 70-76.	1.8	6
39	Oral administration of liveLactococcus lactisC59 suppresses IgE antibody production in ovalbumin-sensitized mice via the regulation of interleukin-4 production. FEMS Immunology and Medical Microbiology, 2011, 61, 315-322.	2.7	19
40	Lactoferrin promotes hyaluronan synthesis in human dermal fibroblasts. Biotechnology Letters, 2011, 33, 33-39.	2.2	19
41	Survival of a Lactococcus lactis strain varies with its carbohydrate preference under in vitro conditions simulated gastrointestinal tract. International Journal of Food Microbiology, 2010, 143, 226-229.	4.7	40
42	Cytokine Responses of Splenocytes of Female and Male Non-Obese Diabetic Mice Induced by Lactic Acid Bacteria. , 2010, , 365-370.		1
43	Characterization of a Bacteriocin Produced by Enterococcus faecalis N1-33 and Its Application as a Food Preservative. Journal of Food Protection, 2009, 72, 524-530.	1.7	14
44	Inhibition of leukotriene B4 production in murine macrophages by lactic acid bacteria. International Journal of Food Microbiology, 2009, 129, 321-324.	4.7	6
45	Bile resistance in Lactococcus lactis strains varies with cellular fatty acid composition: Analysis by using different growth media. International Journal of Food Microbiology, 2009, 131, 183-188.	4.7	35
46	Immunomodulatory and cytotoxic effects of various Lactococcus strains on the murine macrophage cell line J774.1. International Journal of Food Microbiology, 2008, 123, 159-165.	4.7	51
47	Different Growth Media Alter the Induction of Interleukin 12 by a Lactococcus lactis Strain. Journal of Food Protection, 2008, 71, 2124-2128.	1.7	15
48	Anti-ageing effect of a lactococcal strain: analysis using senescence-accelerated mice. British Journal of Nutrition, 2007, 98, 1178-1186.	2.3	74
49	Behavior of Glucosinolates in Pickling Cruciferous Vegetables. Journal of Agricultural and Food Chemistry, 2006, 54, 9430-9436.	5.2	43
50	Cooperative function of the CHD5-like protein Mdm39p with a P-type ATPase Spf1p in the maintenance of ER homeostasis in Saccharomyces cerevisiae. Molecular Genetics and Genomics, 2005, 273, 497-506.	2.1	19
51	Survival of Genetically Modified and Self-Cloned Strains of Commercial Baker's Yeast in Simulated Natural Environments: Environmental Risk Assessment. Applied and Environmental Microbiology, 2005, 71, 7075-7082.	3.1	17
52	Superior Molasses Assimilation, Stress Tolerance, and Trehalose Accumulation of Baker's Yeast Isolated from Dried Sweet Potatoes (hoshi-imo). Bioscience, Biotechnology and Biochemistry, 2004, 68, 1442-1448.	1.3	37
53	Acidophilic structure and killing mechanism of the Pichia farinosa killer toxin SMKT. Topics in Current Genetics, 2004, , 189-214.	0.7	3
54	Cloning and chromosomal mapping ofURA3 genes ofPichia farinosa andP. sorbitophila encoding orotidine-5?-phosphate decarboxylase. Yeast, 2003, 20, 905-912.	1.7	5

CHISE SUZUKI

#	Article	IF	CITATIONS
55	Screening and characterization of transposon-insertion mutants in a pseudohyphal strain ofSaccharomyces cerevisiae. Yeast, 2003, 20, 407-415.	1.7	20
56	Interaction of SMKT, a killer toxin produced byPichia farinosa, with the yeast cell membranes. Yeast, 2001, 18, 1471-1478.	1.7	45
57	Immunochemical and Mutational Analyses of P-type ATPase Spf1p Involved in the Yeast Secretory Pathway. Bioscience, Biotechnology and Biochemistry, 2001, 65, 2405-2411.	1.3	34
58	An electrospray-ionization mass spectrometry analysis of the pH-dependent dissociation and denaturation processes of a heterodimeric protein. Journal of the American Society for Mass Spectrometry, 2000, 11, 54-61.	2.8	13
59	P-type ATPase spf1 mutants show a novel resistance mechanism for the killer toxin SMKT. Molecular Microbiology, 1999, 32, 813-823.	2.5	93
60	Characterization of the solution properties of Pichia farinosa killer toxin using PCSE NMR diffusion measurements. Journal of Biomolecular NMR, 1999, 13, 113-117.	2.8	26
61	Secretion of a protoxin post-translationally controlled by NaCl in a halotolerant yeast,pichia farinosa. , 1999, 15, 123-131.		12
62	Evolutionary relationships among Aspergillus oryzae and related species based on the sequences of 18S rRNA genes and internal transcribed spacers Journal of General and Applied Microbiology, 1998, 44, 225-230.	0.7	35
63	Regulation of the "tetCD―genes of transposon Tn10. Journal of Molecular Biology, 1997, 270, 14-25.	4.2	14
64	The novel acidophilic structure of the killer toxin from halotolerant yeast demonstrates remarkable folding similarity with a fungal killer toxin. Structure, 1997, 5, 81-94.	3.3	41
65	Crystallization and preliminary X-ray diffraction studies of a novel killer toxin from a halotolerant yeast Pichia farinosa. Acta Crystallographica Section D: Biological Crystallography, 1997, 53, 112-113.	2.5	3
66	Microflora of Mana, a Nepalese rice koji. Journal of Bioscience and Bioengineering, 1996, 81, 168-170.	0.9	19
67	Comparative sequence analysis on the 18S rRNA gene of Aspergillus oryzae, A. sojae, A. flavus, A. parasiticus, A. niger, A. awamori and A. tamarii Journal of General and Applied Microbiology, 1996, 42, 181-187.	0.7	12
68	Mineral and Amino Acid Contents of Kinema, a Fermented Soybean Food Prepared in Nepal Food Science and Technology Research, 1995, 1, 107-111.	0.2	18
69	Changes in rice proteins during miso fermentation Journal of the Japanese Society for Food Science and Technology, 1991, 38, 316-322.	0.1	2
70	Isolation and Characterization of Halotolerant Killer Yeasts from Fermented Foods. Agricultural and Biological Chemistry, 1989, 53, 2593-2597.	0.3	7
71	Purification and Properties of the Killer Toxin Produced by a Halotolerant Yeast, <i>Pichia farinosa</i> . Agricultural and Biological Chemistry, 1989, 53, 2599-2604.	0.3	0
72	Isolation and characterization of halotolerant killer yeasts from fermented foods Agricultural and Biological Chemistry, 1989, 53, 2593-2597.	0.3	24

#	Article	IF	CITATIONS
73	Purification and properties of the killer toxin produced by a halotolerant yeast, Pichia farinosa Agricultural and Biological Chemistry, 1989, 53, 2599-2604.	0.3	21