
Ian David Leigh Foster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1028383/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Abiotic predictors of fine sediment accumulation in lowland rivers. International Journal of Sediment Research, 2022, 37, 128-137.	1.8	16
2	Comparison of observed and DEM-driven field-to-river routing of flow from eroding fields in an arable lowland catchment. Catena, 2022, 208, 105737.	2.2	8
3	Runâ€off and sediment storage: The effectiveness of mitigation measures against soil erosion and freshwater pollution. Land Degradation and Development, 2021, 32, 2453-2455.	1.8	8
4	Potential physical effects of suspended fine sediment on lotic macroinvertebrates. Hydrobiologia, 2020, 847, 697-711.	1.0	17
5	Monitoring soil erosion on agricultural land: results and implications for the Rother valley, West Sussex, UK. Earth Surface Processes and Landforms, 2020, 45, 3931-3942.	1.2	10
6	Later Prehistoric and Norse Communities in the Northern Isles: Multi-Proxy Environmental Investigations on Orkney. Environmental Archaeology, 2020, , 1-22.	0.6	0
7	Sediment source fingerprinting: benchmarking recent outputs, remaining challenges and emerging themes. Journal of Soils and Sediments, 2020, 20, 4160-4193.	1.5	124
8	Trace metal distribution in the bed, bank and suspended sediment of the Ravensbourne River and its implication for sediment monitoring in an urban river. Journal of Soils and Sediments, 2019, 19, 946-963.	1.5	12
9	A palaeoenvironmental study of particle sizeâ€specific connectivity—New insights and implications from the West Sussex Rother Catchment, United Kingdom. River Research and Applications, 2019, 35, 1192-1202.	0.7	8
10	Professor Geoffrey Petts (1953–2018): An outstanding interdisciplinary river scientist. River Research and Applications, 2019, 35, 1075-1090.	0.7	3
11	Offâ€site impacts of soil erosion and runoff: Why connectivity is more important than erosion rates. Soil Use and Management, 2019, 35, 245-256.	2.6	76
12	An analysis of potential controls on long-term 137Cs accumulation in the sediments of UK lakes. Journal of Paleolimnology, 2018, 60, 1-30.	0.8	8
13	â€~Local gradient' and betweenâ€site variability of erosion rate on badlands in the Karoo, South Africa. Earth Surface Processes and Landforms, 2018, 43, 871-883.	1.2	4
14	The impact of catchment source group classification on the accuracy of sediment fingerprinting outputs. Journal of Environmental Management, 2017, 194, 16-26.	3.8	56
15	Did prehistoric and Roman mining and metallurgy have a significant impact on vegetation?. Journal of Archaeological Science: Reports, 2017, 11, 613-625.	0.2	16
16	Long-term studies of land degradation in the Sneeuberg uplands, eastern Karoo, South Africa: A synthesis. Geomorphology, 2017, 285, 106-120.	1.1	19
17	Sediment source fingerprinting for informing catchment management: Methodological approaches, problems and uncertainty. Journal of Environmental Management, 2017, 194, 1-3.	3.8	14
18	Can channel banks be the dominant source of fine sediment in a UK river?: an example using ¹³⁷ Cs to interpret sediment yield and sediment source. Earth Surface Processes and Landforms, 2017, 42, 624-634.	1.2	9

#	Article	IF	CITATIONS
19	The complexities of measuring fine sediment accumulation within gravelâ€bed rivers. River Research and Applications, 2017, 33, 1575-1584.	0.7	23
20	Are source groups always appropriate when sediment fingerprinting? The direct comparison of source and sediment samples as a methodological step. River Research and Applications, 2017, 33, 1553-1563.	0.7	14
21	A comparison of conventional and 137 Cs-based estimates of soil erosion rates on arable and grassland across lowland England and Wales. Earth-Science Reviews, 2017, 173, 49-64.	4.0	55
22	Sediment source fingerprinting as an aid to catchment management: A review of the current state of knowledge and a methodological decision-tree for end-users. Journal of Environmental Management, 2017, 194, 86-108.	3.8	201
23	Use of sediment source fingerprinting to assess the role of subsurface erosion in the supply of fine sediment in a degraded catchment in the Eastern Cape, South Africa. Journal of Environmental Management, 2017, 194, 27-41.	3.8	34
24	The scale problem in tackling diffuse water pollution from agriculture: Insights from the <scp>A</scp> von <scp>D</scp> emonstration <scp>T</scp> est <scp>C</scp> atchment programme in <scp>E</scp> ngland. River Research and Applications, 2017, 33, 1527-1538.	0.7	20
25	More rain, less soil: longâ€ŧerm changes in rainfall intensity with climate change. Earth Surface Processes and Landforms, 2016, 41, 563-566.	1.2	72
26	The dynamics of sediment-associated contaminants over a transition from drought to multiple flood events in a lowland UK catchment. Hydrological Processes, 2016, 30, 704-719.	1.1	21
27	Preface: proceedings of the 13th IASWS international conference. Journal of Soils and Sediments, 2015, 15, 2347-2349.	1.5	Ο
28	A 13â€year record of erosion on badland sites in the Karoo, South Africa. Earth Surface Processes and Landforms, 2015, 40, 1964-1981.	1.2	56
29	The application of sediment fingerprinting to floodplain and lake sediment cores: assumptions and uncertainties evaluated through case studies in the Nene Basin, UK. Journal of Soils and Sediments, 2015, 15, 2132-2154.	1.5	38
30	Conservatism of mineral magnetic signatures in farm dam sediments in the South African Karoo: the potential effects of particle size and post-depositional diagenesis. Journal of Soils and Sediments, 2015, 15, 2387-2397.	1.5	24
31	The uncertainties associated with sediment fingerprinting suspended and recently deposited fluvial sediment in the Nene river basin. Geomorphology, 2015, 228, 303-319.	1.1	109
32	Identifying evidence for past mining and metallurgy from a record of metal contamination preserved in an ombrotrophic mire near Leadhills, SW Scotland, UK. Holocene, 2014, 24, 1719-1730.	0.9	14
33	A 3300-year atmospheric metal contamination record from Raeburn Flow raised bog, south west Scotland. Journal of Archaeological Science, 2014, 44, 1-11.	1.2	36
34	The assumptions of science. Earth-Science Reviews, 2013, 127, 308-310.	4.0	17
35	Sediment yield changes in the semi-arid Karoo: a palaeoenvironmental reconstruction of sediments accumulating in Cranemere Reservoir, Eastern Cape, South Africa. Zeitschrift Für Geomorphologie, 2012, 56, 131-146.	0.3	13
36	A reconstruction of historical changes in sediment sources, sediment transfer and sediment yield in a small, semi-arid Karoo catchment, semi-arid South Africa. Zeitschrift Für Geomorphologie, 2012, 56, 87-100.	0.3	22

#	Article	IF	CITATIONS
37	CHANGING SEDIMENT YIELD AND SEDIMENT DYNAMICS IN THE KAROO UPLANDS, SOUTH AFRICA; POSTâ€EUROPEAN IMPACTS. Land Degradation and Development, 2012, 23, 508-522.	1.8	50
38	What can we learn about soil erosion from the use of 137Cs?. Earth-Science Reviews, 2011, 108, 101-113.	4.0	159
39	The potential for paleolimnology to determine historic sediment delivery to rivers. Journal of Paleolimnology, 2011, 45, 287-306.	0.8	61
40	The potential significance of the breaching of small farm dams in the Sneeuberg region, South Africa. Journal of Soils and Sediments, 2011, 11, 1456-1465.	1.5	25
41	Environmental Stress and Landscape Recovery in a Semi-Arid Area, The Karoo, South Africa. Scottish Geographical Journal, 2010, 126, 64-75.	0.4	19
42	An integrated lake-catchment approach for determining sediment source changes at Aqualate Mere, Central England. Journal of Paleolimnology, 2009, 42, 215-232.	0.8	28
43	Soil erosion and risk-assessment for on- and off-farm impacts: A test case using the Midhurst area, West Sussex, UK. Journal of Environmental Management, 2009, 90, 2578-2588.	3.8	91
44	Ancient copper and lead pollution records from a raised bog complex in Central Wales, UK. Journal of Archaeological Science, 2009, 36, 1504-1515.	1.2	70
45	Sediment tracing and environmental history for two small catchments, Karoo Uplands, South Africa. Geomorphology, 2007, 90, 126-143.	1.1	104
46	Turbidity dynamics during spring storm events in an urban headwater river system: The Upper Tame, West Midlands, UK. Science of the Total Environment, 2006, 360, 109-126.	3.9	247
47	Suspended particulate matter (SPM) in rivers: empirical data and models. Ecological Modelling, 2005, 183, 251-267.	1.2	21
48	Sediment and phosphorus delivery from field to river via land drains in England and Wales. A risk assessment using field and national databases. Soil Use and Management, 2003, 19, 347-355.	2.6	18
49	Particulate phosphorus transport by sub-surface drainage from agricultural land in the UK. Environmental significance at the catchment and national scale. Science of the Total Environment, 2001, 266, 95-102.	3.9	52
50	The use of caesium-137 measurements to establish a sediment budget for the Start catchment, Devon, UK. Hydrological Sciences Journal, 1997, 42, 405-423.	1.2	82
51	Learning in small groups in university geography courses: designing a core module around group projects. Journal of Geography in Higher Education, 1996, 20, 167-180.	1.4	48
52	137Cs losses from a loamy surface water gleyed soil (Inceptisol); a laboratory simulation experiment. Catena, 1996, 26, 227-245.	2.2	40
53	â€~Water and environmental systems': achieving studentâ€centred learning objectives with an undergraduate journal. Journal of Geography in Higher Education, 1996, 20, 45-54.	1.4	13
54	Control and independence strayegies for large geography classes. Journal of Geography in Higher Education, 1994, 18, 245-262.	1.4	2

#	Article	IF	CITATIONS
55	Anthropogenic sediment traps and network dislocation in a lowland UK river. Earth Surface Processes and Landforms, 0, , .	1.2	5
56	Fine Particulate Sediment Transfers in Lowland Rural Environments. , 0, , 215-236.		2
57	SMART – Sediment Mitigation Actions for the River Rother, UK. Proceedings of the International Association of Hydrological Sciences, 0, 375, 35-39.	1.0	2