Janet Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1028285/publications.pdf Version: 2024-02-01

ΙΔΝΙΕΤ ΤΑΥΙ ΟΡ

#	Article	IF	CITATIONS
1	Kafirin Microparticle Encapsulation of Catechin and Sorghum Condensed Tannins. Journal of Agricultural and Food Chemistry, 2009, 57, 7523-7528.	2.4	79
2	Preferential binding of sorghum tannins with γ-kafirin and the influence of tannin binding on kafirin digestibility and biodegradation. Journal of Cereal Science, 2007, 46, 22-31.	1.8	77
3	Effect of Preparation Conditions on Protein Secondary Structure and Biofilm Formation of Kafirin. Journal of Agricultural and Food Chemistry, 2005, 53, 306-312.	2.4	69
4	Alleviation of the adverse effect of cooking on sorghum protein digestibility through fermentation in traditional African porridges. International Journal of Food Science and Technology, 2002, 37, 129-137.	1.3	65
5	Functionality of the storage proteins in gluten-free cereals and pseudocereals in dough systems. Journal of Cereal Science, 2016, 67, 22-34.	1.8	60
6	Transgenic Sorghum with Altered Kafirin Synthesis: Kafirin Solubility, Polymerization, and Protein Digestion. Journal of Agricultural and Food Chemistry, 2011, 59, 9265-9270.	2.4	59
7	Sorghum condensed tannins encapsulated in kafirin microparticles as a nutraceutical for inhibition of amylases during digestion to attenuate hyperglycaemia. Journal of Functional Foods, 2015, 12, 55-63.	1.6	59
8	Effect of suppressing the synthesis of different kafirin sub-classes on grain endosperm texture, protein body structure and protein nutritional quality in improved sorghum lines. Journal of Cereal Science, 2011, 54, 160-167.	1.8	57
9	Developments in the Science of Zein, Kafirin, and Gluten Protein Bioplastic Materials. Cereal Chemistry, 2013, 90, 344-357.	1.1	55
10	Co-suppression of synthesis of major α-kafirin sub-class together with γ-kafirin-1 and γ-kafirin-2 required for substantially improved protein digestibility in transgenic sorghum. Plant Cell Reports, 2014, 33, 521-537.	2.8	53
11	Improvement of zein dough characteristics using dilute organic acids. Journal of Cereal Science, 2014, 60, 157-163.	1.8	42
12	Formation of kafirin microparticles by phase separation from an organic acid and their characterisation. Journal of Cereal Science, 2009, 50, 99-105.	1.8	35
13	Glacial Acetic Acid—A Novel Food-Compatible Solvent for Kafirin Extraction. Cereal Chemistry, 2005, 82, 485-487.	1.1	33
14	Formation of a viscoelastic dough from isolated total zein (α-, β- and γ-zein) using a glacial acetic acid treatment. Journal of Cereal Science, 2016, 71, 250-257.	1.8	32
15	Factors Affecting the Porridge-Making Quality of South African Sorghums. Journal of the Science of Food and Agriculture, 1997, 73, 464-470.	1.7	30
16	Protein Biofortified Sorghum: Effect of Processing into Traditional African Foods on Their Protein Quality. Journal of Agricultural and Food Chemistry, 2011, 59, 2386-2392.	2.4	29
17	Kafirin microparticle encapsulated sorghum condensed tannins exhibit potential as an anti-hyperglycaemic agent in a small animal model. Journal of Functional Foods, 2016, 20, 394-399.	1.6	29
18	Making Kafirin, the Sorghum Prolamin, into a Viable Alternative Protein Source. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 969-990.	0.8	25

JANET TAYLOR

#	Article	IF	CITATIONS
19	Improvement in Water Stability and Other Related Functional Properties of Thin Cast Kafirin Protein Films. Journal of Agricultural and Food Chemistry, 2011, 59, 12674-12682.	2.4	23
20	Role of Î ³ -Kafirin in the Formation and Organization of Kafirin Microstructures. Journal of Agricultural and Food Chemistry, 2013, 61, 10757-10765.	2.4	21
21	Comparison of formation of visco-elastic masses and their properties between zeins and kafirins. Food Chemistry, 2018, 245, 178-188.	4.2	20
22	Influence of dough sheeting, flour pre-gelatinization and zein inclusion on maize bread dough functionality. LWT - Food Science and Technology, 2020, 121, 108993.	2.5	20
23	Formation and properties of viscoelastic masses made from kafirin by a process of simple coacervation from solution in glacial acetic acid using water. Food Chemistry, 2018, 239, 333-342.	4.2	19
24	Oxidation of commercial (α-type) zein with hydrogen peroxide improves its hydration and dramatically increases dough extensibility even below its glass transition temperature. Journal of Cereal Science, 2016, 70, 108-115.	1.8	18
25	Preparation of Free-Standing Films from Kafirin Protein Microparticles: Mechanism of Formation and Functional Properties. Journal of Agricultural and Food Chemistry, 2009, 57, 6729-6735.	2.4	17
26	Effect of kafirin protein coating on sensory quality and shelfâ€life of â€~Packham's Triumph' pears during ripening. Journal of the Science of Food and Agriculture, 2011, 91, 2814-2820.	1.7	17
27	Comparative functional properties of kafirin and zein viscoelastic masses formed by simple coacervation at different acetic acid and protein concentrations. Journal of Cereal Science, 2018, 83, 16-24.	1.8	15
28	Biocompatibility and biodegradation of protein microparticle and film scaffolds made from kafirin (sorghum prolamin protein) subcutaneously implanted in rodent models. Journal of Biomedical Materials Research - Part A, 2015, 103, 2582-2590.	2.1	14
29	Physicochemical Modification of Kafirin Microparticles and Their Ability To Bind Bone Morphogenetic Protein-2 (BMP-2), for Application as a Biomaterial. Journal of Agricultural and Food Chemistry, 2012, 60, 8419-8426.	2.4	13
30	Extraction and Film Properties of Kafirin from Coarse Sorghum and Sorghum DDGS by Percolation. Cereal Chemistry, 2017, 94, 693-698.	1.1	10
31	Modification of zein dough functionality using kafirin as a coprotein. Food Chemistry, 2022, 373, 131547.	4.2	5

Industrial and Nonfood Applications. , 2019, , 393-420.

4