Libo Li

List of Publications by Citations

Source: https://exaly.com/author-pdf/1028019/libo-li-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

131 6,019 39 75 g-index

146 8,260 8.4 6.39 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
131	MXene molecular sieving membranes for highly efficient gas separation. <i>Nature Communications</i> , 2018 , 9, 155	17.4	530
130	Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. <i>Science</i> , 2018 , 362, 443-446	33.3	478
129	Molecular sieving of ethylene from ethane using a rigid metal-organic framework. <i>Nature Materials</i> , 2018 , 17, 1128-1133	27	326
128	Optimized Separation of Acetylene from Carbon Dioxide and Ethylene in a Microporous Material. Journal of the American Chemical Society, 2017 , 139, 8022-8028	16.4	263
127	Nitrogen and sulfur co-doped carbon dots for highly selective and sensitive detection of Hg (II) ions. <i>Biosensors and Bioelectronics</i> , 2015 , 74, 263-9	11.8	248
126	Porous metal-organic frameworks for gas storage and separation: Status and challenges. <i>EnergyChem</i> , 2019 , 1, 100006	36.9	235
125	Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. <i>Nature Sustainability</i> , 2020 , 3, 296-302	22.1	204
124	Boosting Ethane/Ethylene Separation within Isoreticular Ultramicroporous Metal-Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2018 , 140, 12940-12946	16.4	186
123	Water Transport with Ultralow Friction through Partially Exfoliated g-C N Nanosheet Membranes with Self-Supporting Spacers. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8974-8980	16.4	177
122	Flexible-Robust Metal-Organic Framework for Efficient Removal of Propyne from Propylene. <i>Journal of the American Chemical Society</i> , 2017 , 139, 7733-7736	16.4	177
121	Paralyzed membrane: Current-driven synthesis of a metal-organic framework with sharpened propene/propane separation. <i>Science Advances</i> , 2018 , 4, eaau1393	14.3	132
120	Water-based routes for synthesis of metal-organic frameworks: A review. <i>Science China Materials</i> , 2020 , 63, 667-685	7.1	103
119	Enhanced Gas Uptake in a Microporous Metal-Organic Framework a Sorbate Induced-Fit Mechanism. <i>Journal of the American Chemical Society</i> , 2019 , 141, 17703-17712	16.4	94
118	Selective Ethane/Ethylene Separation in a Robust Microporous Hydrogen-Bonded Organic Framework. <i>Journal of the American Chemical Society</i> , 2020 , 142, 633-640	16.4	86
117	Adsorption of CO2, CH4, and N2 on 8-, 10-, and 12-Membered Ring Hydrophobic Microporous High-Silica Zeolites: DDR, Silicalite-1, and Beta. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 17856-17864	3.9	85
116	A robust Th-azole framework for highly efficient purification of CH from a CH/CH/CH mixture. <i>Nature Communications</i> , 2020 , 11, 3163	17.4	83
115	A Metal-Organic Framework with Suitable Pore Size and Specific Functional Sites for the Removal of Trace Propyne from Propylene. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 15183-15188	16.4	83

(2020-2019)

114	A metal B rganic framework with suitable pore size and dual functionalities for highly efficient post-combustion CO2 capture. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 3128-3134	13	82	
113	A Metal-Organic Framework with Optimized Porosity and Functional Sites for High Gravimetric and Volumetric Methane Storage Working Capacities. <i>Advanced Materials</i> , 2018 , 30, e1704792	24	81	
112	Engineering New Defects in MIL-100(Fe) via a Mixed-Ligand Approach To Effect Enhanced Volatile Organic Compound Adsorption Capacity. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 774	1-782	69	
111	Separation of CO2/CH4 and CH4/N2 mixtures by M/DOBDC: A detailed dynamic comparison with MIL-100(Cr) and activated carbon. <i>Microporous and Mesoporous Materials</i> , 2014 , 198, 236-246	5.3	68	
110	Efficient separation of ethylene from acetylene/ethylene mixtures by a flexible-robust metalBrganic framework. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 18984-18988	13	68	
109	Kinetic separation of propylene over propane in a microporous metal-organic framework. <i>Chemical Engineering Journal</i> , 2018 , 354, 977-982	14.7	67	
108	Adsorption of CO2, CH4, and N2 on Gas Diameter Grade Ion-Exchange Small Pore Zeolites. <i>Journal of Chemical & </i>	2.8	66	
107	Exploiting the gate opening effect in a flexible MOF for selective adsorption of propyne from C1/C2/C3 hydrocarbons. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 751-755	13	63	
106	Selective gas diffusion in two-dimensional MXene lamellar membranes: insights from molecular dynamics simulations. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 11734-11742	13	61	
105	Fine-tuning of nano-traps in a stable metal®rganic framework for highly efficient removal of propyne from propylene. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 6931-6937	13	57	
104	Immobilization of Oxygen Atoms in the Pores of Microporous Metal©rganic Frameworks for C2H2 Separation and Purification. <i>ACS Applied Nano Materials</i> , 2020 , 3, 2911-2919	5.6	52	
103	Recent advances in the synthesis of monolithic metal-organic frameworks. <i>Science China Materials</i> , 2021 , 64, 1305-1319	7.1	51	
102	Simultaneous determination of ascorbic acid, dopamine and uric acid at a nitrogen-doped carbon nanofiber modified electrode. <i>RSC Advances</i> , 2015 , 5, 11925-11932	3.7	47	
101	Efficient separation of CH from CH/CO mixtures in an acid-base resistant metal-organic framework. <i>Chemical Communications</i> , 2018 , 54, 4846-4849	5.8	46	
100	Robust Microporous Metal-Organic Frameworks for Highly Efficient and Simultaneous Removal of Propyne and Propadiene from Propylene. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 10209-1	o294	45	
99	Ethylene/ethane separation in a stable hydrogen-bonded organic framework through a gating mechanism. <i>Nature Chemistry</i> , 2021 , 13, 933-939	17.6	45	
98	A novel electrochemiluminescence sensor based on Ru(bpy)[l+/N-doped carbon nanodots system for the detection of bisphenol A. <i>Analytica Chimica Acta</i> , 2015 , 895, 104-11	6.6	44	
97	Atomic Force Microscopy and Molecular Dynamics Simulations for Study of Lignin Solution Self-Assembly Mechanisms in Organic-Aqueous Solvent Mixtures. <i>ChemSusChem</i> , 2020 , 13, 4420-4427	8.3	43	

96	Guest-dependent pressure induced gate-opening effect enables effective separation of propene and propane in a flexible MOF. <i>Chemical Engineering Journal</i> , 2018 , 346, 489-496	14.7	41
95	Boosting Ethylene/Ethane Separation within Copper(I)-Chelated Metal-Organic Frameworks through Tailor-Made Aperture and Specific Ecomplexation. <i>Advanced Science</i> , 2020 , 7, 1901918	13.6	41
94	A Rod-Packing Hydrogen-Bonded Organic Framework with Suitable Pore Confinement for Benchmark Ethane/Ethylene Separation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 10304-10	13 ¹ 10 ⁴	41
93	Direct electrochemistry of glucose oxidase on novel free-standing nitrogen-doped carbon nanospheres@carbon nanofibers composite film. <i>Scientific Reports</i> , 2015 , 5, 9885	4.9	40
92	Zeolite CAN and AFI-Type Zeolitic Imidazolate Frameworks with Large 12-Membered Ring Pore Openings Synthesized Using Bulky Amides as Structure-Directing Agents. <i>Journal of the American Chemical Society</i> , 2016 , 138, 16232-16235	16.4	39
91	Microporous Metal-Organic Framework with Dual Functionalities for Efficient Separation of Acetylene from Light Hydrocarbon Mixtures. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7,	8.3	39
90	Molecular Understanding of the Penetration of Functionalized Gold Nanoparticles into Asymmetric Membranes. <i>Langmuir</i> , 2017 , 33, 361-371	4	38
89	Computer simulations on the pH-sensitive tri-block copolymer containing zwitterionic sulfobetaine as a novel anti-cancer drug carrier. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 152, 260-268	6	37
88	Hierarchically structured metalorganic frameworks assembled by hydroxy double saltomplate synergy with high spacetime yields. <i>CrystEngComm</i> , 2018 , 20, 1057-1064	3.3	32
87	Protein Translocation through a MoS2 Nanopore:A Molecular Dynamics Study. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 2070-2080	3.8	32
86	Flexible Metal Drganic Frameworks with Discriminatory Gate-Opening Effect for the Separation of Acetylene from Ethylene/Acetylene Mixtures. <i>European Journal of Inorganic Chemistry</i> , 2016 , 2016, 445	7 2 4462	32
85	Enhanced electrochemiluminescence based on Ru(bpy)[]+-doped silica nanoparticles and graphene composite for analysis of melamine in milk. <i>Analytica Chimica Acta</i> , 2014 , 824, 57-63	6.6	30
84	A MetalDrganic Framework with Suitable Pore Size and Specific Functional Sites for the Removal of Trace Propyne from Propylene. <i>Angewandte Chemie</i> , 2018 , 130, 15403-15408	3.6	30
83	Benchmark C H /CO Separation in an Ultra-Microporous Metal-Organic Framework via Copper(I)-Alkynyl Chemistry. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 15995-16002	16.4	29
82	Protection of open-metal V(III) sites and their associated COICHINIOIHD adsorption properties in mesoporous V-MOFs. <i>Journal of Colloid and Interface Science</i> , 2015 , 456, 197-205	9.3	28
81	Opportunities and critical factors of porous metal <mark>o</mark> rganic frameworks for industrial light olefins separation. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 1954-1984	7.8	28
80	Amorphous flower-like molybdenum-sulfide-@-nitrogen-doped-carbon-nanofiber film for use in the hydrogen-evolution reaction. <i>Journal of Colloid and Interface Science</i> , 2016 , 472, 69-75	9.3	28
79	Adsorption and separation of CO2 on Fe(II)-MOF-74: Effect of the open metal coordination site. Journal of Solid State Chemistry, 2014 , 213, 224-228	3.3	28

(2020-2016)

78	Liquid Diquid Equilibria for the Ternary System Mesityl Oxide + Phenol + Water at 298.15, 313.15, and 323.15 K. <i>Journal of Chemical & Engineering Data</i> , 2016 , 61, 2493-2498	2.8	27	
77	Surface Regulation Towards Stimuli-Responsive Luminescence of Ultrasmall Thiolated Gold Nanoparticles for Ratiometric Imaging. <i>Advanced Functional Materials</i> , 2019 , 29, 1806945	15.6	26	
76	A comprehensive study of the enantioseparation of chiral drugs by cyclodextrin using capillary electrophoresis combined with theoretical approaches. <i>Talanta</i> , 2015 , 142, 28-34	6.2	26	
<i>75</i>	A Microporous Hydrogen-Bonded Organic Framework for the Efficient Capture and Purification of Propylene. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 20400-20406	16.4	26	
74	Reversing CH-CO adsorption selectivity in an ultramicroporous metal-organic framework platform. <i>Chemical Communications</i> , 2019 , 55, 11354-11357	5.8	25	
73	Separation of CO2/CH4 and CH4/N2 mixtures using MOF-5 and Cu3(BTC)2. <i>Journal of Energy Chemistry</i> , 2014 , 23, 453-460	12	25	
72	Application of ionic liquid as additive in determination of three \(\partial \) agonists by capillary electrophoresis with amperometric detection. <i>Electrophoresis</i> , 2013 , 34, 277-83	3.6	25	
71	Water Transport with Ultralow Friction through Partially Exfoliated g-C3N4 Nanosheet Membranes with Self-Supporting Spacers. <i>Angewandte Chemie</i> , 2017 , 129, 9102-9108	3.6	24	
70	Targeted capture and pressure/temperature-responsive separation in flexible metal®rganic frameworks. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 22574-22583	13	24	
69	Ammonia capture and flexible transformation of M-2(INA) (M=Cu, Co, Ni, Cd) series materials. Journal of Hazardous Materials, 2016 , 306, 340-347	12.8	24	
68	Nickel-4'-(3,5-dicarboxyphenyl)-2,2',6',2?-terpyridine Framework: Efficient Separation of Ethylene from Acetylene/Ethylene Mixtures with a High Productivity. <i>Inorganic Chemistry</i> , 2018 , 57, 9489-9494	5.1	22	
67	Efficient Purification of Ethylene from C Hydrocarbons with an CH/CH-Selective Metal-Organic Framework. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 962-969	9.5	22	
66	Solvent effect on xylose conversion under catalyst-free conditions: insights from molecular dynamics simulation and experiments. <i>Green Chemistry</i> , 2020 , 22, 532-539	10	22	
65	Separation of C2/C1 hydrocarbons through a gate-opening effect in a microporous metalBrganic framework. <i>CrystEngComm</i> , 2017 , 19, 6896-6901	3.3	21	
64	Adsorption and separation of propane/propylene on various ZIF-8 polymorphs: Insights from GCMC simulations and the ideal adsorbed solution theory (IAST). <i>Chemical Engineering Journal</i> , 2020 , 386, 123	19 ¹ 45 ⁷	21	
63	Understanding the Cellular Uptake of pH-Responsive Zwitterionic Gold Nanoparticles: A Computer Simulation Study. <i>Langmuir</i> , 2017 , 33, 14480-14489	4	20	
62	Exploiting the pore size and functionalization effects in UiO topology structures for the separation of light hydrocarbons. <i>CrystEngComm</i> , 2017 , 19, 1729-1737	3.3	19	
61	Removal of Ammonia Emissions via Reversible Structural Transformation in M(BDC) (M = Cu, Zn, Cd) Metal-Organic Frameworks. <i>Environmental Science & Environmental Science & En</i>	10.3	17	

60	Fluorinated Biphenyldicarboxylate-Based Metal-Organic Framework Exhibiting Efficient Propyne/Propylene Separation. <i>Inorganic Chemistry</i> , 2020 , 59, 4030-4036	5.1	17
59	Phase Behavior of an Amphiphilic Block Copolymer in Ionic Liquid: A Dissipative Particle Dynamics Study. <i>Journal of Chemical & Dissipative Particle Dynamics</i> Study. <i>Journal of Chemical Business</i> Study. <i>Journal of </i>	2.8	17
58	An Ultramicroporous Metal®rganic Framework for Sieving Separation of Carbon Dioxide from Methane. <i>Small Structures</i> , 2020 , 1, 2000022	8.7	16
57	Microporous metal-organic framework with specific functional sites for efficient removal of ethane from ethane/ethylene mixtures. <i>Chemical Engineering Journal</i> , 2020 , 387, 124137	14.7	15
56	Liquid Liquid Equilibria for the Methyl Tert-Butyl Ketone + Phenol + Water Ternary System at 298.15, 313.15 and 323.15 K. <i>Journal of Solution Chemistry</i> , 2015 , 44, 1891-1899	1.8	14
55	Measurement and Correlation of Liquid Liquid Equilibria for the Ternary Methyl Isobutyl Ketone + Phenol + Water System at (333.15, 343.15 and 353.15) K under Atmospheric Pressure. <i>Journal of Solution Chemistry</i> , 2016 , 45, 875-884	1.8	14
54	Computer Simulations on the Channel Membrane Formation by Nonsolvent Induced Phase Separation. <i>Macromolecular Theory and Simulations</i> , 2017 , 26, 1700027	1.5	14
53	A Rod-Packing Hydrogen-Bonded Organic Framework with Suitable Pore Confinement for Benchmark Ethane/Ethylene Separation. <i>Angewandte Chemie</i> , 2021 , 133, 10392-10398	3.6	14
52	Phase Equilibrium for Phenol Extraction from Aqueous Solution with 2-Pentanone at Different Temperatures. <i>Journal of Solution Chemistry</i> , 2016 , 45, 1414-1424	1.8	14
51	Reversed ethane/ethylene adsorption in a metal-organic framework introduction of oxygen. <i>Chinese Journal of Chemical Engineering</i> , 2020 , 28, 593-593	3.2	14
50	Ternary Liquid Liquid Equilibria for the System 2-Methoxy-2-methylpropane + m-Cresol + Water at 298.15 and 313.15 K: Experimental Data and Correlation. <i>Journal of Solution Chemistry</i> , 2015 , 44, 2393-2	240 ⁸ 4	13
49	Computer Simulation of DNA Condensation by PAMAM Dendrimer. <i>Macromolecular Theory and Simulations</i> , 2018 , 27, 1700070	1.5	13
48	CO2/CH4 and CH4/N2 separation on isomeric metal organic frameworks. <i>Chinese Journal of Chemical Engineering</i> , 2016 , 24, 1687-1694	3.2	13
47	Microregulation of Pore Channels in Covalent-Organic Frameworks Used for the Selective and Efficient Separation of Ethane. <i>ACS Applied Materials & Description of Ethane (Note: ACS Applied Materials & Description of Ethane)</i> 12, 52819-52825	9.5	13
46	Robust Microporous Metal@rganic Frameworks for Highly Efficient and Simultaneous Removal of Propyne and Propadiene from Propylene. <i>Angewandte Chemie</i> , 2019 , 131, 10315-10320	3.6	12
45	Ethylenediamine-functionalized metal organic frameworks MIL-100(Cr) for efficient CO2/N2O separation. <i>Separation and Purification Technology</i> , 2020 , 235, 116219	8.3	12
44	Functionalized Metal-Organic Frameworks for the Efficient Removal of Low Concentrations of Ammonia. <i>ChemPlusChem</i> , 2016 , 81, 222-228	2.8	12
43	Optimized pore environment for efficient high selective C2H2/C2H4 and C2H2/CO2 separation in a metal-organic framework. <i>Separation and Purification Technology</i> , 2021 , 256, 117749	8.3	12

(2021-2013)

42	Adsorption and molecular simulation of CO2 and CH4 in two-dimensional metalorganic frameworks with the same layered substrate. <i>CrystEngComm</i> , 2013 , 15, 6782	3.3	11	
41	Modification of the pore environment in UiO-type metal-organic framework toward boosting the separation of propane/propylene. <i>Chemical Engineering Journal</i> , 2021 , 403, 126428	14.7	11	
40	A novel dark-field microscopy technique coupled with capillary electrophoresis for visual analysis of single nanoparticles. <i>Analyst, The</i> , 2013 , 138, 3705-10	5	10	
39	Benchmark C2H2/CO2 Separation in an Ultra-Microporous Metal © rganic Framework via Copper(I)-Alkynyl Chemistry. <i>Angewandte Chemie</i> , 2021 , 133, 16131-16138	3.6	10	
38	Rational Construction and Performance Regulation of an In(III)-Tetraisophthalate Framework for One-Step Adsorption-Phase Purification of CH from C Hydrocarbons. <i>Inorganic Chemistry</i> , 2021 , 60, 108	31 9 -10	829	
37	An ethane-favored metal-organic framework with tailored pore environment used for efficient ethylene separation. <i>Microporous and Mesoporous Materials</i> , 2021 , 320, 111096	5.3	8	
36	Direct Functionalization of the Open Metal Sites in Rare Earth-Based Metal Drganic Frameworks Used for the Efficient Separation of Ethylene. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 6123-6129	3.9	7	
35	Small molecule solvation changes due to the presence of salt are governed by the cost of solvent cavity formation and dispersion. <i>Journal of Chemical Physics</i> , 2014 , 141, 22D518	3.9	7	
34	One-dimensional interpenetrated coordination polymers showing step gas sorption properties. <i>CrystEngComm</i> , 2013 , 15, 1689	3.3	7	
33	Application of hierarchically porous metal-organic frameworks in heterogeneous catalysis: A review. <i>Science China Materials</i> , 2022 , 65, 298-320	7.1	7	
32	Reversible flexible structural changes in multidimensional MOFs by guest molecules (I2, NH3) and thermal stimulation. <i>Journal of Solid State Chemistry</i> , 2015 , 226, 114-119	3.3	6	
31	Liquid Phase Equilibria of the Water + Propionic or Butyric Acid + Methyl tert-Butyl Ketone Ternary Systems at (298.15 and 323.15) K. <i>Journal of Chemical & Engineering Data</i> , 2015 , 60, 2612-2617	2.8	6	
30	Tie-Line Data for Aqueous Mixtures of Butyric Acid with Diisopropyl Ether at Various Temperatures. Journal of Chemical & Data, 2016, 61, 760-765	2.8	6	
29	Solvent effect on xylose-to-furfural reaction in biphasic systems: combined experiments with theoretical calculations. <i>Green Chemistry</i> ,	10	6	
28	The inorganic cation-tailored "trapdoor" effect of silicoaluminophosphate zeolite for highly selective CO separation. <i>Chemical Science</i> , 2021 , 12, 8803-8810	9.4	6	
27	Research on CO2-N2O separation using flexible metal organic frameworks. <i>Separation and Purification Technology</i> , 2020 , 251, 117311	8.3	5	
26	A Thermally and Chemically Stable Copper(II) Metal-Organic Framework with High Performance for Gas Adsorption and Separation. <i>Inorganic Chemistry</i> , 2021 , 60, 6550-6558	5.1	5	
25	Construction of a Porous Metal-Organic Framework with a High Density of Open Cr Sites for Record N /O Separation. <i>Advanced Materials</i> , 2021 , 33, e2100866	24	5	

24	Construction of saturated coordination titanium-based metal®rganic framework for one-step C2H2/C2H6/C2H4 separation. <i>Separation and Purification Technology</i> , 2021 , 276, 119284	8.3	5
23	Phase Equilibrium Measurement and Thermodynamic Modeling of the 4-Methylpentan-2-one/3-Methylphenol, and 4-Methylphenol/Water Ternary Systems at 298.2, 313.2, and 323.2 K and 0.1 MPa. <i>Journal of Chemical & Data</i> , Engineering Data, 2017, 62, 141-147	2.8	4
22	On-line focusing of 5-hydroxy-tryptamine type 3 receptor antagonists via the combination of field-enhanced sample injection and dynamic pH junction in capillary electrophoresis with amperometric detection. <i>Journal of Chromatography A</i> , 2014 , 1331, 117-22	4.5	4
21	Liquid Diquid Equilibrium of Ternary Systems of Methyl Isobutyl Ketone + o-Cresol + Water at 298.2, 313.2 and 323.2 K. <i>Journal of Solution Chemistry</i> , 2017 , 46, 2204-2213	1.8	4
20	RESEARCH ON THE ADSORPTION OF O2 IN METAL DRGANIC FRAMEWORKS WITH OPEN MANGANESE(II) COORDINATION SITES. Functional Materials Letters, 2013 , 06, 1350004	1.2	4
19	A stable metalorganic framework with well-matched pore cavity for efficient acetylene separation. <i>AICHE Journal</i> , 2021 , 67, e17152	3.6	4
18	Boosting molecular recognition of acetylene in UiO-66 framework through pore environment functionalization. <i>Chemical Engineering Science</i> , 2021 , 237, 116572	4.4	4
17	Ammonia Modification on UTSA-280 for C2H4/C2H6 Separation. <i>Acta Chimica Sinica</i> , 2020 , 78, 534	3.3	3
16	Lysozyme Adsorption on Porous Organic Cages: A Molecular Simulation Study. <i>Langmuir</i> , 2020 , 36, 12	29 <u>9</u> -123	30 §
15	Identical Composition and Distinct Performance: How ZIF-8 Polymorphs (Structures Affect the Adsorption/Separation of Ethane and Ethene. <i>Journal of Chemical & Data</i> , 2021, 66, 3483-3492	2.8	3
14	Substituent-Induced Electron-Transfer Strategy for Selective Adsorption of N in MIL-101(Cr)-X Metal-Organic Frameworks <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 ,	9.5	3
13	Selective adsorption of propene over propane on Li-decorated poly (triazine imide). <i>Green Energy and Environment</i> , 2020 , 7, 307-307	5.7	2
12	A Microporous Hydrogen-Bonded Organic Framework for the Efficient Capture and Purification of Propylene. <i>Angewandte Chemie</i> , 2021 , 133, 20563-20569	3.6	2
11	Molecular dynamics simulation on DNA translocating through MoS2 nanopores with various structures. <i>Frontiers of Chemical Science and Engineering</i> , 2021 , 15, 922-934	4.5	2
10	Energy efficient ethylene purification in a commercially viable ethane-selective MOF. <i>Separation and Purification Technology</i> , 2021 , 282, 120126	8.3	1
9	Ultrafine tuning of the pore size in zeolite A for efficient propyne removal from propylene. <i>Chinese Journal of Chemical Engineering</i> , 2021 , 37, 217-217	3.2	1
8	The efficient separation of NO/CO using unsaturated Fe sites in MIL-100Fe. <i>Chemical Communications</i> , 2021 , 57, 6636-6639	5.8	1
7	Enriching Low-Concentration Coalbed Methane Using a Hydrophobic Adsorbent under Humid Conditions. <i>Industrial & Description of the Methane Using a Hydrophobic Adsorbent under Humid Conditions. Industrial & Description of the Methane Using a Hydrophobic Adsorbent under Humid Conditions. Industrial & Description of the Methane Using a Hydrophobic Adsorbent under Humid Conditions. Industrial & Description of the Methane Using a Hydrophobic Adsorbent under Humid Conditions. Industrial & Description of the Methane Using a Hydrophobic Adsorbent under Humid Conditions. Industrial & Description of the Methane Using a Hydrophobic Adsorbent under Humid Conditions. Industrial & Description of the Methane Using a Hydrophobic Adsorbent under Humid Conditions. Industrial & Description of the Methane Using a Hydrophobic Adsorbent under Humid Conditions. Industrial & Description of the Methane Using a Hydrophobic Adsorbent under Humid Conditions. Industrial & Description of the Methane Using a Hydrophobic Adsorbent under Humid Condition of the Methane Using a Hydrophobic Adsorbent under Humid Condition of the Methane Using a Hydrophobic Adsorbent under Humid Condition of the Methane Using a Hydrophobic Adsorbent under Humid Condition of the Methane Using a Hydrophobic Adsorbent under Humid Condition of the Methane Using a Hydrophobic Adsorbent under Humid Condition of the Methane Using Advanced Using Advanced</i>	3.9	1

LIST OF PUBLICATIONS

6	Lysozyme Adsorption on Different Functionalized MXenes: A Multiscale Simulation Study. <i>Langmuir</i> , 2021 , 37, 5932-5942	4	O
5	Synthesis and Structural Characterization of a Two-Dimensional Magnesium Acetate, Mg7(OH)2(OAc)12(H2O)4[4H2O, a Precursor to Three-Dimensional Porous Magnesium Acetate. <i>European Journal of Inorganic Chemistry</i> , 2016 , 2016, 3299-3304	2.3	0
4	Stable titanium metal-organic framework with strong binding affinity for ethane removal. <i>Chinese Journal of Chemical Engineering</i> , 2021 , 42, 35-35	3.2	0
3	K-Chabazite Zeolite Nanocrystal Aggregates for Highly Efficient Methane Separation <i>Angewandte Chemie - International Edition</i> , 2021 , e202116850	16.4	O
2	Integrating tri-mural nanotraps into a microporous metal-organic framework for C2H2/CO2 and C2H2/C2H4 separation. <i>Separation and Purification Technology</i> , 2022 , 296, 121404	8.3	0
1	Construction of a Porous Metal©rganic Framework with a High Density of Open Cr Sites for Record N2/O2 Separation (Adv. Mater. 37/2021). <i>Advanced Materials</i> , 2021 , 33, 2170291	24	