
Guo-qiang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1027889/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbial diversity and abundance in the Xinjiang Luliang longâ€ŧerm waterâ€flooding petroleum reservoir. MicrobiologyOpen, 2015, 4, 332-342.	3.0	87
2	Compositions and Abundances of Sulfate-Reducing and Sulfur-Oxidizing Microorganisms in Water-Flooded Petroleum Reservoirs with Different Temperatures in China. Frontiers in Microbiology, 2017, 08, 143.	3.5	84
3	Optimization of nutrient component for diesel oil degradation by Rhodococcus erythropolis. Marine Pollution Bulletin, 2008, 56, 1714-1718.	5.0	78
4	Microbial Abundance and Community Composition Influence Production Performance in a Low-Temperature Petroleum Reservoir. Environmental Science & Technology, 2014, 48, 5336-5344.	10.0	61
5	Genetic Rearrangement Strategy for Optimizing the Dibenzothiophene Biodesulfurization Pathway in <i>Rhodococcus erythropolis</i> . Applied and Environmental Microbiology, 2008, 74, 971-976.	3.1	60
6	Spatial isolation and environmental factors drive distinct bacterial and archaeal communities in different types of petroleum reservoirs in China. Scientific Reports, 2016, 6, 20174.	3.3	57
7	Characterization of microbial diversity and community in water flooding oil reservoirs in China. World Journal of Microbiology and Biotechnology, 2012, 28, 3039-3052.	3.6	48
8	Improvement of Dibenzothiophene Desulfurization Activity by Removing the Gene Overlap in thedszOperon. Bioscience, Biotechnology and Biochemistry, 2007, 71, 849-854.	1.3	42
9	Optimization of nutrient component for diesel oil degradation by Acinetobacter beijerinckii ZRS. Marine Pollution Bulletin, 2013, 76, 325-332.	5.0	42
10	The evolutionary life cycle of the polysaccharide biosynthetic gene cluster based on the Sphingomonadaceae. Scientific Reports, 2017, 7, 46484.	3.3	41
11	Heavy hydrocarbon degradation of crude oil by a novel thermophilic Geobacillus stearothermophilus strain A-2. International Biodeterioration and Biodegradation, 2018, 126, 224-230.	3.9	40
12	Bacterial cellulose synthesis mechanism of facultative anaerobe Enterobacter sp. FY-07. Scientific Reports, 2016, 6, 21863.	3.3	39
13	Structural and physical properties of sanxan polysaccharide from Sphingomonas sanxanigenens. Carbohydrate Polymers, 2016, 144, 410-418.	10.2	38
14	Nutrients and oxygen alter reservoir biochemical characters and enhance oil recovery during biostimulation. World Journal of Microbiology and Biotechnology, 2013, 29, 2045-2054.	3.6	35
15	Production of bacterial cellulose hydrogels with tailored crystallinity from Enterobacter sp. FY-07 by the controlled expression of colanic acid synthetic genes. Carbohydrate Polymers, 2019, 207, 563-570.	10.2	35
16	Improved biodesulfurization of hydrodesulfurized diesel oil using Rhodococcus erythropolis and Gordonia sp Biotechnology Letters, 2008, 30, 1759-1764.	2.2	34
17	Genetic Analysis of Benzothiophene Biodesulfurization Pathway of Gordonia terrae Strain C-6. PLoS ONE, 2013, 8, e84386.	2.5	34
18	An Exogenous Surfactant-Producing Bacillus subtilis Facilitates Indigenous Microbial Enhanced Oil Recovery. Frontiers in Microbiology, 2016, 7, 186.	3.5	34

GUO-QIANG LI

#	Article	IF	CITATIONS
19	Directional and Adaptive Oil Selfâ€Transport on a Multiâ€Bioinspired Grooved Conical Spine. Advanced Functional Materials, 2022, 32, .	14.9	34
20	Cross-Species Bioinspired Anisotropic Surfaces for Active Droplet Transportation Driven by Unidirectional Microcolumn Waves. ACS Applied Materials & Interfaces, 2020, 12, 42264-42273.	8.0	33
21	A fishbone-inspired liquid splitter enables directional droplet transportation and spontaneous separation. Journal of Materials Chemistry A, 2021, 9, 9719-9728.	10.3	31
22	Tailor-made polysaccharides containing uniformly distributed repeating units based on the xanthan gum skeleton. International Journal of Biological Macromolecules, 2019, 131, 646-653.	7.5	29
23	In situ production of bacterial cellulose/xanthan gum nanocomposites with enhanced productivity and properties using Enterobacter sp. FY-07. Carbohydrate Polymers, 2020, 248, 116788.	10.2	29
24	Dynamic processes of indigenous microorganisms from a low-temperature petroleum reservoir during nutrient stimulation. Journal of Bioscience and Bioengineering, 2014, 117, 215-221.	2.2	25
25	Network structure and functional properties of transparent hydrogel sanxan produced by Sphingomonas sanxanigenens NX02. Carbohydrate Polymers, 2017, 176, 65-74.	10.2	25
26	The simultaneous production of sphingan Ss and poly(R-3-hydroxybutyrate) in Sphingomonas sanxanigenens NXO2. International Journal of Biological Macromolecules, 2016, 82, 361-368.	7.5	22
27	Succession of microbial communities and changes of incremental oil in a post-polymer flooded reservoir with nutrient stimulation. Applied Microbiology and Biotechnology, 2018, 102, 2007-2017.	3.6	22
28	Efficient simultaneous utilization of glucose and xylose from corn straw by Sphingomonas sanxanigenens NXO2 to produce microbial exopolysaccharide. Bioresource Technology, 2021, 319, 124126.	9.6	22
29	PCR–DGGE method for analyzing the bacterial community in a high temperature petroleum reservoir. World Journal of Microbiology and Biotechnology, 2008, 24, 1981-1987.	3.6	21
30	Regulation of hyaluronic acid molecular weight and titer by temperature in engineered Bacillus subtilis. 3 Biotech, 2019, 9, 225.	2.2	21
31	Microbial enhanced oil recovery through deep profile control using a conditional bacterial cellulose-producing strain derived from Enterobacter sp. FY-07. Microbial Cell Factories, 2020, 19, 59.	4.0	21
32	Production of nisin-containing bacterial cellulose nanomaterials with antimicrobial properties through co-culturing Enterobacter sp. FY-07 and Lactococcus lactis N8. Carbohydrate Polymers, 2021, 251, 117131.	10.2	21
33	Gel properties of xanthan containing a single repeating unit with saturated pyruvate produced by an engineered Xanthomonas campestris CGMCC 15155. Food Hydrocolloids, 2019, 87, 747-757.	10.7	20
34	Sarcoglycosides A – C, New <i>O</i> â€Glycosylglycerol Derivatives from the South China Sea Soft Co <i>Sarcophyton infundibuliforme</i> . Helvetica Chimica Acta, 2009, 92, 1495-1502.	oral 1.6	19
35	Construction and application of a <i>Xanthomonas campestris </i> <scp>CGMCC</scp> 15155 strain that produces white xanthan gum. MicrobiologyOpen, 2019, 8, e00631.	3.0	18
36	Fabrication of emulsion gel based on polymer sanxan and its potential as a sustained-release delivery system for β-carotene. International Journal of Biological Macromolecules, 2020, 164, 597-605.	7.5	18

Guo-qiang Li

#	Article	IF	CITATIONS
37	Self-Propelled and Electrobraking Synergetic Liquid Manipulator toward Microsampling and Bioanalysis. ACS Applied Materials & amp; Interfaces, 2021, 13, 14741-14751.	8.0	17
38	Erythrobacter spongiae sp. nov., isolated from marine sponge. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 1111-1116.	1.7	17
39	A novel mechanism of protein thermostability: a unique N-terminal domain confers heat resistance to Fe/Mn-SODs. Scientific Reports, 2015, 4, 7284.	3.3	15
40	Temperature-controlled molecular weight of hyaluronic acid produced by engineered Bacillus subtilis. Biotechnology Letters, 2021, 43, 271-277.	2.2	15
41	Halomonas plays a central role in the syntrophic community of an alkaline oil reservoir with alkali-surfactant-polymer (ASP) flooding. Science of the Total Environment, 2020, 747, 141333.	8.0	13
42	Highly efficient production of bacterial cellulose from corn stover total hydrolysate by Enterobacter sp. FY-07. Bioresource Technology, 2021, 341, 125781.	9.6	13
43	Stochastic assembly process dominates bacterial succession during a long-term microbial enhanced oil recovery. Science of the Total Environment, 2021, 790, 148203.	8.0	12
44	Water-soluble phosphorus contributes significantly to shaping the community structure of rhizospheric bacteria in rocky desertification areas. Scientific Reports, 2019, 9, 18408.	3.3	11
45	Improved production of carotenoid-free welan gum in a genetic-engineered Alcaligenes sp. ATCC31555. Biotechnology Letters, 2016, 38, 991-997.	2.2	10
46	Thermostable and rheological properties of natural and genetically engineered xanthan gums in different solutions at high temperature. International Journal of Biological Macromolecules, 2021, 182, 1208-1217.	7.5	10
47	Genetic and Comparative Genome Analysis of Exiguobacterium aurantiacum SW-20, a Petroleum-Degrading Bacteria with Salt Tolerance and Heavy Metal-Tolerance Isolated from Produced Water of Changqing Oilfield, China. Microorganisms, 2022, 10, 66.	3.6	10
48	LC Method for Analysis of Three Flavonols in Rat Plasma and Urine after Oral Administration of Polygonum aviculare Extract. Chromatographia, 2009, 69, 1251-1258.	1.3	8
49	Disentangling the distinct mechanisms shaping the subsurface oil reservoir bacterial and archaeal communities across northern China. Science of the Total Environment, 2021, 789, 148074.	8.0	8
50	Altererythrobacter spongiae sp. nov., a novel member of the genus Altererythrobacter isolated from marine sponge. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 2043-2048.	1.7	7
51	Enhancement of transparent hydrogel sanxan production in Sphingomonas sanxanigenens NXO2 via rational and random gene manipulation. Carbohydrate Polymers, 2018, 189, 210-217.	10.2	6
52	Deep mining decreases the microbial taxonomic and functional diversity of subsurface oil reservoirs. Science of the Total Environment, 2022, 821, 153564.	8.0	6
53	The relative abundance of alkaneâ€degrading bacteria oscillated similarly to a sinusoidal curve in an artificial ecosystem model from oilâ€well products. Environmental Microbiology, 2018, 20, 3772-3783.	3.8	5
54	Reclassification of Enterobacter sp. FY-07 as Kosakonia oryzendophytica FY-07 and Its Potential to Promote Plant Growth. Microorganisms, 2022, 10, 575.	3.6	5

Guo-qiang Li

#	Article	IF	CITATIONS
55	A novel bioemulsifier from Geobacillus stearothermophilus A-2 and its potential application in microbial enhanced oil recovery. RSC Advances, 2016, 6, 96347-96354.	3.6	4
56	Cloning and expressing DBT (dibenzothiophene) monooxygenase gene (dszC) from Rhodococcus sp. DS-3 in Escherichia coli. Frontiers of Biology in China: Selected Publications From Chinese Universities, 2006, 1, 375-380.	0.2	3
57	Characterization of a polysaccharide hydrogel with high elasticity produced by a mutant strain Sphingomonas sanxanigenens NXO3. Carbohydrate Polymers, 2022, 280, 119030.	10.2	3
58	CnnPOGTP: a novel CNN-based predictor for identifying the optimal growth temperatures of prokaryotes using only genomic <i>k</i> -mers distribution. Bioinformatics, 2022, 38, 3106-3108.	4.1	3
59	Microstructural stability of heat-resistant high-pressure die-cast Mg-4Al-4Ce alloy. International Journal of Materials Research, 2017, 108, 427-430.	0.3	2
60	Use of Biosurfactants in Oil Recovery. , 2016, , 1-16.		2
61	Nutrient Stimulation of Indigenous Microorganisms for Oil-in-Water Emulsion in a Medium Temperature Petroleum Reservoir with Ca2+-Rich Brine. Geofluids, 2021, 2021, 1-9.	0.7	1
62	Bacterial and Archaeal Community Distribution in Oilfield Water Re-injection Facilities and the Influences from Microorganisms in Injected Water. Microbial Ecology, 2021, , 1.	2.8	1
63	Electrochemical Studies on De-Emulsification: Effect of a Biosurfactant Produced by <i>Bacillus subtilis</i> MO-1. Journal of Dispersion Science and Technology, 2014, 35, 907-912.	2.4	0
64	Use of Biosurfactants in Oil Recovery. , 2017, , 689-704.		0
65	Effects of Air Injection on the Metabolic Activity of Emulsifier-Producing Bacteria from Oil Reservoirs. Geofluids, 2020, 2020, 1-9.	0.7	0