Shaohong Zang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10277150/publications.pdf

Version: 2024-02-01

1478505 1720034 7 637 6 7 citations h-index g-index papers 7 7 7 1204 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Layered Co(OH) < sub > 2 < /sub > Deposited Polymeric Carbon Nitrides for Photocatalytic Water Oxidation. ACS Catalysis, 2015, 5, 941-947.	11.2	335
2	Ultrafine Cobalt Catalysts on Covalent Carbon Nitride Frameworks for Oxygenic Photosynthesis. ACS Applied Materials & Samp; Interfaces, 2016, 8, 2287-2296.	8.0	103
3	Cobalt selenide: a versatile cocatalyst for photocatalytic water oxidation with visible light. Journal of Materials Chemistry A, 2015, 3, 17946-17950.	10.3	96
4	Enhancement of photocatalytic H2 evolution on pyrene-based polymer promoted by MoS2 and visible light. Applied Catalysis B: Environmental, 2019, 251, 102-111.	20.2	55
5	Polymeric Donor–Acceptor Heterostructures for Enhanced Photocatalytic H ₂ Evolution without Using Pt Cocatalysts. Chemistry - A European Journal, 2019, 25, 6102-6107.	3.3	33
6	Polarization-induced carrier separation in conjugated polyimide for boosted visible light driven H2O2 production. Applied Surface Science, 2022, 594, 153478.	6.1	10
7	Tunable Carrier Transfer of Polymeric Carbon Nitride with Charge-Conducting CoV2O6â^™2H2O for Photocatalytic O2 Evolution. Nanomaterials, 2022, 12, 1931.	4.1	5