Chang-Jun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10275534/publications.pdf

Version: 2024-02-01

236833 276775 3,014 44 25 41 citations h-index g-index papers 45 45 45 4145 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Association of Metformin Use With Risk of Venous Thromboembolism in Adults With Type 2 Diabetes: A General-Population–Based Cohort Study. American Journal of Epidemiology, 2022, 191, 856-866.	1.6	2
2	Heterotopic Ossification: Clinical Features, Basic Researches, and Mechanical Stimulations. Frontiers in Cell and Developmental Biology, 2022, 10, 770931.	1.8	18
3	Long noncoding RNA Gm31629 protects against mucosal damage in experimental colitis via YB-1/E2F pathway. JCI Insight, 2022, 7, .	2.3	4
4	Mechanical stimulation promotes enthesis injury repair by mobilizing Prrx1+ cells via ciliary TGF- \hat{l}^2 signaling. ELife, 2022, 11, .	2.8	9
5	miR-188-3p targets skeletal endothelium coupling of angiogenesis and osteogenesis during ageing. Cell Death and Disease, 2022, 13, .	2.7	6
6	A mechanosensitive lipolytic factor in the bone marrow promotes osteogenesis and lymphopoiesis. Cell Metabolism, 2022, 34, 1168-1182.e6.	7.2	32
7	The role of autophagy in bone homeostasis. Journal of Cellular Physiology, 2021, 236, 4152-4173.	2.0	39
8	Endocrine role of bone in the regulation of energy metabolism. Bone Research, 2021, 9, 25.	5.4	55
9	Senescent immune cells release grancalcin to promote skeletal aging. Cell Metabolism, 2021, 33, 1957-1973.e6.	7.2	70
10	Editorial: Novel Therapies for Combating Bone Diseases Through Advances in Bone Remodeling. Frontiers in Cell and Developmental Biology, 2021, 9, 766963.	1.8	0
11	Identification of SCARA3 with potential roles in metabolic disorders. Aging, 2021, 13, 2149-2167.	1.4	12
12	Regulation of bone marrow mesenchymal stem cell fate by long non-coding RNA. Bone, 2020, 141, 115617.	1.4	18
13	Communications Between Bone Marrow Macrophages and Bone Cells in Bone Remodeling. Frontiers in Cell and Developmental Biology, 2020, 8, 598263.	1.8	64
14	Bone and Muscle Crosstalk in Aging. Frontiers in Cell and Developmental Biology, 2020, 8, 585644.	1.8	63
15	Obesity and Bone Health: A Complex Link. Frontiers in Cell and Developmental Biology, 2020, 8, 600181.	1.8	59
16	Ophiopogonin D promotes bone regeneration by stimulating CD31 ^{hi} EMCN ^{hi} vessel formation. Cell Proliferation, 2020, 53, e12784.	2.4	23
17	Reducing Hypothalamic Stem Cell Senescence Protects against Aging-Associated Physiological Decline. Cell Metabolism, 2020, 31, 534-548.e5.	7.2	75
18	miR-188 promotes liver steatosis and insulin resistance via the autophagy pathway. Journal of Endocrinology, 2020, 245, 411-423.	1.2	14

#	Article	IF	CITATIONS
19	Bone Marrow Mesenchymal Stem Cells-Derived Exosomal MiR-29b-3p Regulates Aging-Associated Insulin Resistance. ACS Nano, 2019, 13, 2450-2462.	7.3	119
20	Krüppel-like factor 3 inhibition by mutated lncRNA <i>Reg1cp</i> results in human high bone mass syndrome. Journal of Experimental Medicine, 2019, 216, 1944-1964.	4.2	41
21	The association between CD31hiEmcnhi endothelial cells and bone mineral density in Chinese women. Journal of Bone and Mineral Metabolism, 2019, 37, 987-995.	1.3	23
22	Ras homolog family member A/Rho-associated protein kinase 1 signaling modulates lineage commitment of mesenchymal stem cells in asthmatic patients through lymphoid enhancer–binding factor 1. Journal of Allergy and Clinical Immunology, 2019, 143, 1560-1574.e6.	1.5	32
23	Mannose receptor modulates macrophage polarization and allergic inflammation through miR-511-3p. Journal of Allergy and Clinical Immunology, 2018, 141, 350-364.e8.	1.5	91
24	Long noncoding RNA Bmncr regulates mesenchymal stem cell fate during skeletal aging. Journal of Clinical Investigation, 2018, 128, 5251-5266.	3.9	170
25	Oxidized phospholipids are ligands for LRP6. Bone Research, 2018, 6, 22.	5.4	27
26	Role of RhoA/ROCK signaling in lung inflammation and lineage commitment of Mesenchymal stem cells in asthma. Journal of Allergy and Clinical Immunology, 2017, 139, AB184.	1.5	1
27	Programmed cell senescence in skeleton during late puberty. Nature Communications, 2017, 8, 1312.	5.8	70
28	MiR-497 $\hat{a}^{-1}/4195$ cluster regulates angiogenesis during coupling with osteogenesis by maintaining endothelial Notch and HIF- $1\hat{1}\pm$ activity. Nature Communications, 2017, 8, 16003.	5.8	157
29	Aberrant Transforming Growth Factor- $\langle i \rangle \hat{l}^2 \langle i \rangle$ Activation Recruits Mesenchymal Stem Cells During Prostatic Hyperplasia. Stem Cells Translational Medicine, 2017, 6, 394-404.	1.6	27
30	GDF11 Inhibits Bone Formation by Activating Smad2/3 in Bone Marrow Mesenchymal Stem Cells. Calcified Tissue International, 2016, 99, 500-509.	1.5	34
31	Microrna-155 Regulates Cockroach Allergen Induced Cyclooxygenase-2 Expression in Airway Epithelium. Journal of Allergy and Clinical Immunology, 2016, 137, AB175.	1.5	1
32	RhoA determines lineage fate of mesenchymal stem cells by modulating CTGF–VEGF complex in extracellular matrix. Nature Communications, 2016, 7, 11455.	5.8	61
33	Halofuginone attenuates osteoarthritis by inhibition of TGF- $\hat{1}^2$ activity and H-type vessel formation in subchondral bone. Annals of the Rheumatic Diseases, 2016, 75, 1714-1721.	0.5	182
34	Lipoprotein receptor–related protein 6 is required for parathyroid hormone–induced <i>Sost</i> suppression. Annals of the New York Academy of Sciences, 2016, 1364, 62-73.	1.8	33
35	MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. Journal of Clinical Investigation, 2015, 125, 1509-1522.	3.9	418
36	Effect of lentivirus-mediated uPA silencing on the proliferation and apoptosis of chondrocytes and the expression of MMPs. Journal of Huazhong University of Science and Technology [Medical Sciences], 2015, 35, 111-116.	1.0	3

CHANG-JUN LI

#	Article	IF	CITATION
37	Functional Effects of TGF-β1 on Mesenchymal Stem Cell Mobilization in Cockroach Allergen–Induced Asthma. Journal of Immunology, 2014, 192, 4560-4570.	0.4	61
38	PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nature Medicine, 2014, 20, 1270-1278.	15.2	641
39	Mesenchymal Stem Cells Recruited by Active $TGF\hat{l}^2$ Contribute to Osteogenic Vascular Calcification. Stem Cells and Development, 2014, 23, 1392-1404.	1.1	38
40	LRP6 in mesenchymal stem cells is required for bone formation during bone growth and bone remodeling. Bone Research, 2014, 2, 14006.	5.4	23
41	Construction and verification of the targeted uPA-shRNA lentiviral vector and evaluation of the transfection and silencing rate. Experimental and Therapeutic Medicine, 2014, 8, 435-441.	0.8	O
42	Disruption of LRP6 in osteoblasts blunts the bone anabolic activity of PTH. Journal of Bone and Mineral Research, 2013, 28, 2094-2108.	3.1	66
43	Injuryâ€Activated Transforming Growth Factor β Controls Mobilization of Mesenchymal Stem Cells for Tissue Remodeling. Stem Cells, 2012, 30, 2498-2511.	1.4	129
44	Cathepsin K+ Non-Osteoclast Cells in the Skeletal System: Function, Models, Identity, and Therapeutic Implications. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	3