Tim Snow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1027382/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pluronic F127 thermosensitive injectable smart hydrogels for controlled drug delivery system development. Journal of Colloid and Interface Science, 2020, 565, 119-130.	9.4	152
2	The modular small-angle X-ray scattering data correction sequence. Journal of Applied Crystallography, 2017, 50, 1800-1811.	4.5	82
3	I22: SAXS/WAXS beamline at Diamond Light Source – an overview of 10 years operation. Journal of Synchrotron Radiation, 2021, 28, 939-947.	2.4	42
4	Structure of lipid multilayers <i>via</i> drop casting of aqueous liposome dispersions. Soft Matter, 2016, 12, 3877-3887.	2.7	34
5	A guide to high-efficiency chromium (III)-collagen cross-linking: Synchrotron SAXS and DSC study. International Journal of Biological Macromolecules, 2019, 126, 123-129.	7.5	24
6	Hydrophobic nanoparticles promote lamellar to inverted hexagonal transition in phospholipid mesophases. Soft Matter, 2015, 11, 8789-8800.	2.7	21
7	Synergy, competition, and the "hanging―polymer layer: Interactions between a neutral amphiphilic â€~tardigrade' comb co-polymer with an anionic surfactant at the air-water interface. Journal of Colloid and Interface Science, 2020, 561, 181-194.	9.4	17
8	A general approach to maximise information density in neutron reflectometry analysis. Machine Learning: Science and Technology, 2020, 1, 035002.	5.0	13
9	The impact of N,N-dimethyldodecylamine N-oxide (DDAO) concentration on the crystallisation of sodium dodecyl sulfate (SDS) systems and the resulting changes to crystal structure, shape and the kinetics of crystal growth. Journal of Colloid and Interface Science, 2018, 527, 260-266.	9.4	12
10	Nuclear magnetic resonance and small-angle X-ray scattering studies of mixed sodium dodecyl sulfate and N,N-dimethyldodecylamine N-oxide aqueous systems performed at low temperatures. Journal of Colloid and Interface Science, 2019, 535, 1-7.	9.4	12
11	Structural changes in lipid mesophases due to intercalation of dendritic polymer nanoparticles: Swollen lamellae, suppressed curvature, and augmented structural disorder. Acta Biomaterialia, 2020, 104, 198-209.	8.3	8
12	Extending synchrotron SAXS instrument ranges through addition of a portable, inexpensive USAXS module with vertical rotation axes. Journal of Synchrotron Radiation, 2021, 28, 824-833.	2.4	6
13	Tomographic X-ray scattering based on invariant reconstruction: analysis of the 3D nanostructure of bovine bone. Journal of Applied Crystallography, 2021, 54, 486-497.	4.5	4
14	An introduction to classical molecular dynamics simulation for experimental scattering users. Journal of Applied Crystallography, 2019, 52, 665-668.	4.5	3
15	uravu: Making Bayesian modelling easy(er). Journal of Open Source Software, 2020, 5, 2214.	4.6	2
16	Amorphous Mg–Fe silicates from microwave-dried sol–gels. Astronomy and Astrophysics, 2019, 624, A136.	5.1	1
17	FitBenchmarking: an open source Python package comparing data fitting software. Journal of Open Source Software, 2021, 6, 3127.	4.6	1
18	In Situ Mechanical Behavior of Regenerating Rat Calvaria Bones Under Tensile Load via Synchrotron		1

#	Article	IF	CITATIONS
19	Investigating the Fibrillar Ultrastructure and Mechanics in Keloid Scars Using In Situ Synchrotron X-ray Nanomechanical Imaging. Materials, 2022, 15, 1836.	2.9	1