Aditi Bhattacherjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1027115/publications.pdf

Version: 2024-02-01

430754 580701 1,016 25 18 25 citations g-index h-index papers 25 25 25 1338 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Femtosecond x-ray spectroscopy of an electrocyclic ring-opening reaction. Science, 2017, 356, 54-59.	6.0	253
2	Critical Assessment of the Strength of Hydrogen Bonds between the Sulfur Atom of Methionine/Cysteine and Backbone Amides in Proteins. Journal of Physical Chemistry Letters, 2015, 6, 1385-1389.	2.1	76
3	Nature and strength of sulfur-centred hydrogen bonds: laser spectroscopic investigations in the gas phase and quantum-chemical calculations. International Reviews in Physical Chemistry, 2015, 34, 99-160.	0.9	71
4	Ultrafast Intersystem Crossing in Acetylacetone via Femtosecond X-ray Transient Absorption at the Carbon K-Edge. Journal of the American Chemical Society, 2017, 139, 16576-16583.	6.6	68
5	Direct Observation of the Transition-State Region in the Photodissociation of CH ₃ 1 by Femtosecond Extreme Ultraviolet Transient Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2015, 6, 5072-5077.	2.1	60
6	The Intermolecular SHâ‹â‹? (Y=S,O) Hydrogen Bond in the H ₂ S Dimer and the H ₂ S–MeOH Complex. ChemPhysChem, 2013, 14, 905-914.	1.0	56
7	Ultrafast X-ray Transient Absorption Spectroscopy of Gas-Phase Photochemical Reactions: A New Universal Probe of Photoinduced Molecular Dynamics. Accounts of Chemical Research, 2018, 51, 3203-3211.	7.6	53
8	O–H···S Hydrogen Bonds Conform to the Acid–Base Formalism. Journal of Physical Chemistry A, 2013, 117, 8238-8250.	1.1	51
9	Singlet and Triplet Contributions to the Excited-State Activities of Dihydrophenazine, Phenoxazine, and Phenothiazine Organocatalysts Used in Atom Transfer Radical Polymerization. Journal of the American Chemical Society, 2021, 143, 3613-3627.	6.6	39
10	Photoinduced Heterocyclic Ring Opening of Furfural: Distinct Open-Chain Product Identification by Ultrafast X-ray Transient Absorption Spectroscopy. Journal of the American Chemical Society, 2018, 140, 12538-12544.	6.6	34
11	Mapping the multi-step mechanism of a photoredox catalyzed atom-transfer radical polymerization reaction by direct observation of the reactive intermediates. Chemical Science, 2020, 11, 4475-4481.	3.7	28
12	Acid–Base Formalism in Dispersion-Stabilized S–H···Y (Yâ•O, S) Hydrogen-Bonding Interactions. Journal of Physical Chemistry A, 2015, 119, 1117-1126.	1.1	25
13	Picosecond to millisecond tracking of a photocatalytic decarboxylation reaction provides direct mechanistic insights. Nature Communications, 2019, 10, 5152.	5.8	24
14	Tracing the 267 nm-Induced Radical Formation in Dimethyl Disulfide Using Time-Resolved X-ray Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 1382-1387.	2.1	24
15	Conformational preferences of monohydrated clusters of imidazole derivatives revisited. Physical Chemistry Chemical Physics, 2015, 17, 20080-20092.	1.3	23
16	Structure-Dependent Electron Transfer Rates for Dihydrophenazine, Phenoxazine, and Phenothiazine Photoredox Catalysts Employed in Atom Transfer Radical Polymerization. Journal of Physical Chemistry B, 2021, 125, 7840-7854.	1.2	22
17	N–H···S Interaction Continues To Be an Enigma: Experimental and Computational Investigations of Hydrogen-Bonded Complexes of Benzimidazole with Thioethers. Journal of Physical Chemistry A, 2018, 122, 4313-4321.	1.1	21
18	Water bridges anchored by a C–Hâ<Ō hydrogen bond: the role of weak interactions in molecular solvation. Physical Chemistry Chemical Physics, 2016, 18, 27745-27749.	1.3	19

#	Article	IF	CITATIONS
19	Transition state region in the A-Band photodissociation of allyl iodideâ€"A femtosecond extreme ultraviolet transient absorption study. Journal of Chemical Physics, 2016, 144, 124311.	1.2	14
20	Electron-Withdrawing Effects in the Photodissociation of CH ₂ ICl To Form CH ₂ Cl Radical, Simultaneously Viewed Through the Carbon K and Chlorine L _{2,3} X-ray Edges. Journal of the American Chemical Society, 2018, 140, 13360-13366.	6.6	14
21	Water-Induced Restructuring of the Surface of a Deep Eutectic Solvent. Journal of Physical Chemistry Letters, 2022, 13, 634-641.	2.1	11
22	Solvent-dependent photochemical dynamics of a phenoxazine-based photoredox catalyst. Zeitschrift Fur Physikalische Chemie, 2020, 234, 1475-1494.	1.4	10
23	Role of the C(2)–H Hydrogen Bond Donor in Gas-Phase Microsolvation of Imidazole Derivatives with ROH (R = CH ₃ , C ₂ H ₅). Journal of Physical Chemistry A, 2017, 121, 4283-4295.	1.1	9
24	Nature and Hierarchy of Noncovalent Interactions in Gas-Phase Binary Complexes of Indole and Benzimidazole with Ethers. Journal of Physical Chemistry A, 2017, 121, 8815-8824.	1.1	7
25	Conformational Heterogeneity and the Role of the C(2)â€"H Donor in Mono- and Dihydrated Clusters of Benzoxazole. Journal of Physical Chemistry A, 2017, 121, 5420-5427.	1.1	4