
Yongqiang Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1027098/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flexible and insulating silicone rubber composites with sandwich structure for thermal management and electromagnetic interference shielding. Composites Science and Technology, 2022, 219, 109253.	7.8	113
2	Hierarchically Multifunctional Polyimide Composite Films with Strongly Enhanced Thermal Conductivity. Nano-Micro Letters, 2022, 14, 26.	27.0	145
3	Significant Reduction of Interfacial Thermal Resistance and Phonon Scattering in Graphene/Polyimide Thermally Conductive Composite Films for Thermal Management. Research, 2021, 2021, 8438614.	5.7	82
4	Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Advanced Composites and Hybrid Materials, 2021, 4, 36-50.	21.1	152
5	Lightweight, Flexible Cellulose-Derived Carbon Aerogel@Reduced Graphene Oxide/PDMS Composites with Outstanding EMI Shielding Performances and Excellent Thermal Conductivities. Nano-Micro Letters, 2021, 13, 91.	27.0	427
6	Nest-like hetero-structured BNNS@SiCnws fillers and significant improvement on thermal conductivities of epoxy composites. Composites Part B: Engineering, 2021, 210, 108666.	12.0	65
7	Liquid Crystalline Polyimide Films with High Intrinsic Thermal Conductivities and Robust Toughness. Macromolecules, 2021, 54, 4934-4944.	4.8	122
8	In-situ fabrication of hetero-structured fillers to significantly enhance thermal conductivities of silicone rubber composite films. Composites Science and Technology, 2021, 210, 108799.	7.8	55
9	Highly thermally conductive carbon nanotubes pillared exfoliated graphite/polyimide composites. Npj Flexible Electronics, 2021, 5, .	10.7	41
10	Improvement of thermal conductivities and simulation model for glass fabrics reinforced epoxy laminated composites via introducing hetero-structured BNN-30@BNNS fillers. Journal of Materials Science and Technology, 2021, 82, 239-249.	10.7	151
11	Multifunctional HDPE/CNTs/PW composite phase change materials with excellent thermal and electrical conductivities. Journal of Materials Science and Technology, 2021, 86, 171-179.	10.7	148
12	Controllable thermal conductivity in composites by constructing thermal conduction networks. Materials Today Physics, 2021, 20, 100449.	6.0	63
13	Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Composites Part A: Applied Science and Manufacturing, 2020, 128, 105670.	7.6	489
14	Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers. Composites Science and Technology, 2020, 187, 107944.	7.8	208
15	Highly Thermal Conductivities, Excellent Mechanical Robustness and Flexibility, and Outstanding Thermal Stabilities of Aramid Nanofiber Composite Papers with Nacre-Mimetic Layered Structures. ACS Applied Materials & Interfaces, 2020, 12, 1677-1686.	8.0	260
16	Interfacial thermal resistance in thermally conductive polymer composites: A review. Composites Communications, 2020, 22, 100518.	6.3	190
17	Factors affecting thermal conductivities of the polymers and polymer composites: A review. Composites Science and Technology, 2020, 193, 108134.	7.8	434
18	High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers. Composites Part B: Engineering, 2020, 185, 107784.	12.0	137

Yongqiang Guo

#	Article	IF	CITATIONS
19	Significant improvement of thermal conductivities for BNNS/PVA composite films via electrospinning followed by hot-pressing technology. Composites Part B: Engineering, 2019, 175, 107070.	12.0	207
20	Band Tunability of Coupled Elastic Waves along Thickness in Laminated Anisotropic Piezoelectric Phononic Crystals. Crystals, 2019, 9, 426.	2.2	5
21	Reduced Graphene Oxide Heterostructured Silver Nanoparticles Significantly Enhanced Thermal Conductivities in Hot-Pressed Electrospun Polyimide Nanocomposites. ACS Applied Materials & Interfaces, 2019, 11, 25465-25473.	8.0	277
22	Simultaneous improvement of thermal conductivities and electromagnetic interference shielding performances in polystyrene composites via constructing interconnection oriented networks based on electrospinning technology. Composites Part A: Applied Science and Manufacturing, 2019, 124, 105484.	7.6	109
23	Constructing fully carbon-based fillers with a hierarchical structure to fabricate highly thermally conductive polyimide nanocomposites. Journal of Materials Chemistry C, 2019, 7, 7035-7044.	5.5	130
24	Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites. Composites Part B: Engineering, 2019, 164, 732-739.	12.0	311
25	A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods. Advanced Composites and Hybrid Materials, 2018, 1, 207-230.	21.1	260
26	Fabrication, proposed model and simulation predictions on thermally conductive hybrid cyanate ester composites with boron nitride fillers. Composites Part A: Applied Science and Manufacturing, 2018, 107, 570-578.	7.6	99
27	Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene <i>via in situ</i> polymerization and electrospinning-hot press technology. Journal of Materials Chemistry C, 2018, 6, 3004-3015.	5.5	360
28	Band Structures Analysis of Elastic Waves Propagating along Thickness Direction in Periodically Laminated Piezoelectric Composites. Crystals, 2018, 8, 351.	2.2	5
29	Aligned cellulose/nanodiamond plastics with high thermal conductivity. Journal of Materials Chemistry C, 2018, 6, 13108-13113.	5.5	46
30	Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization. Composites Science and Technology, 2018, 164, 59-64.	7.8	264
31	Improved thermal conductivities in polystyrene nanocomposites by incorporating thermal reduced graphene oxide via electrospinning-hot press technique. Composites Communications, 2018, 10, 68-72.	6.3	117
32	Analysis of Bending Waves in Phononic Crystal Beams with Defects. Crystals, 2018, 8, 21.	2.2	18
33	Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers. Composites Part A: Applied Science and Manufacturing, 2017, 95, 267-273.	7.6	174
34	Ultralow dielectric, fluoride-containing cyanate ester resins with improved mechanical properties and high thermal and dimensional stabilities. Journal of Materials Chemistry C, 2017, 5, 6929-6936.	5.5	106
35	Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporating NH2-POSS functionalized nBN fillers. Composites Part A: Applied Science and Manufacturing, 2017, 101, 237-242.	7.6	162
36	Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in -situ polymerization-electrospinning-hot press method. Composites Part A: Applied Science and Manufacturing, 2017, 94, 209-216.	7.6	339

Yongqiang Guo

#	Article	IF	CITATIONS
37	Nanopolydopamine coupled fluorescent nanozinc oxide reinforced epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing, 2017, 102, 126-136.	7.6	95
38	Novel reusable porous polyimide fibers for hot-oil adsorption. Journal of Hazardous Materials, 2017, 340, 67-76.	12.4	42
39	Highly thermally conductive POSS-g-SiCp/UHMWPE composites with excellent dielectric properties and thermal stabilities. Composites Part A: Applied Science and Manufacturing, 2015, 78, 95-101.	7.6	118
40	Guided wave propagation in multilayered piezoelectric structures. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52, 1094-1104.	0.2	43
41	The distribution and geological significance of carbazole compounds in Silurian paleo-pools of the Tarim Basin, Northwest China. Diqiu Huaxue, 2008, 27, 1-8.	0.5	1
42	On free wave propagation in anisotropic layered media. Acta Mechanica Solida Sinica, 2008, 21, 500-506.	1.9	15