Toshishige Yamada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1027030/publications.pdf

Version: 2024-02-01

257450 197818 2,463 97 24 49 citations g-index h-index papers 97 97 97 2636 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Maximizing Absorption in Photonâ€Trapping Ultrafast Silicon Photodetectors. Advanced Photonics Research, 2021, 2, 2000190.	3.6	7
2	A semiconductor physics based model for thermal characteristics in electronic electrolytic energy storage devices. Journal of Applied Physics, 2021, 129, 174501.	2.5	2
3	Single Microhole per Pixel in CMOS Image Sensors With Enhanced Optical Sensitivity in Near-Infrared. IEEE Sensors Journal, 2021, 21, 10556-10562.	4.7	9
4	Modeling of nanohole silicon pin/nip photodetectors: Steady state and transient characteristics. Nanotechnology, 2021, 32, 365201.	2.6	6
5	Rigorous coupled-wave analysis of absorption enhancement in vertically illuminated silicon photodiodes with photon-trapping hole arrays. Nanophotonics, 2019, 8, 1747-1756.	6.0	9
6	High-Speed High-Efficiency Photon-Trapping Broadband Silicon PIN Photodiodes for Short-Reach Optical Interconnects in Data Centers. Journal of Lightwave Technology, 2019, 37, 5748-5755.	4.6	17
7	Dramatically Enhanced Efficiency in Ultra-Fast Silicon MSM Photodiodes Via Light Trapping Structures. IEEE Photonics Technology Letters, 2019, 31, 1619-1622.	2.5	13
8	Ultra-Thin MSM Photodetectors with Nano-Structured Surface., 2019,,.		0
9	A New Paradigm in High-Speed and High-Efficiency Silicon Photodiodes for Communicationâ€"Part I: Enhancing Photonâ€"Material Interactions via Low-Dimensional Structures. IEEE Transactions on Electron Devices, 2018, 65, 372-381.	3.0	21
10	A New Paradigm in High-Speed and High-Efficiency Silicon Photodiodes for Communicationâ€"Part II: Device and VLSI Integration Challenges for Low-Dimensional Structures. IEEE Transactions on Electron Devices, 2018, 65, 382-391.	3.0	18
11	Enhanced Quantum Efficiency and Reduction of Reflection for MSM Photodetectors with Nano-Structured Surface. , $2018, , .$		1
12	Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700  nm. Photonics Research, 2018, 6, 734.	7.0	45
13	Surface passivation of silicon photonic devices with high surface-to-volume-ratio nanostructures. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1059.	2.1	14
14	High-Speed High-Efficiency Broadband Silicon Photodiodes for Short-Reach Optical Interconnects in Data Centers. , $2018, $, .		3
15	Black holes enabled light bending and trapping in ultrafast silicon photodetectors. , $2018, \ldots$		O
16	Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes. Nature Photonics, 2017, 11, 301-308.	31.4	167
17	High Speed Surface Illuminated Si Photodiode Using Microstructured Holes for Absorption Enhancements at 900–1000 nm Wavelength. ACS Photonics, 2017, 4, 2053-2060.	6.6	30
18	Optimization of light trapping micro-hole structure for high-speed high-efficiency silicon photodiodes. , 2017, , .		1

#	Article	IF	Citations
19	Highly efficient silicon solar cells designed with photon trapping micro/nano structures. , 2017, , .		1
20	Improved bandwidth and quantum efficiency in silicon photodiodes using photon-manipulating micro/nanostructures operating in the range of 700-1060 nm. , 2017, , .		0
21	Photon-trapping micro/nanostructures for high linearity in ultra-fast photodiodes. , 2017, , .		O
22	Optimization of carbon nanotube ultracapacitor for cell design. Journal of Applied Physics, 2016, $119, \ldots$	2.5	4
23	Inhibiting device degradation induced by surface damages during top-down fabrication of semiconductor devices with micro/nano-scale pillars and holes. , 2016, , .		4
24	Metal–nanocarbon contacts. Semiconductor Science and Technology, 2014, 29, 054006.	2.0	53
25	Electron-beam and ion-beam-induced deposited tungsten contacts for carbon nanofiber interconnects. Nanotechnology, 2014, 25, 375702.	2.6	7
26	Carbon Nanofiber Interconnect RF Characteristics Improvement with Deposited Tungsten Contacts. Journal of Nanoscience and Nanotechnology, 2014, 14, 2683-2686.	0.9	4
27	Modeling of a carbon nanotube ultracapacitor. Nanotechnology, 2012, 23, 095401.	2.6	7
28	Contact improvement using E-beam and FIB deposited tungsten in carbon nanofiber interconnects. , $2011, , .$		0
29	Room-temperature Coulomb staircase in semiconducting InP nanowires modulated with light illumination. Nanotechnology, 2011, 22, 055201.	2.6	13
30	Transport in fused InP nanowire device in dark and under illumination: Coulomb staircase scenario. , $2011, , .$		0
31	Change in carbon nanofiber resistance from ambient to vacuum. AlP Advances, 2011, 1, 022102.	1.3	12
32	Electrical characteristics of carbon nanofibers in air and vacuum. , 2011, , .		1
33	Application of Carbon Nanotubes to Thermal Interface Materials. Journal of Electronic Packaging, Transactions of the ASME, 2011, 133, .	1.8	30
34	Tunneling between carbon nanofiber and gold electrodes. Journal of Applied Physics, 2010, 107, 044304.	2.5	24
35	Coulomb staircase in fused semiconducting InP nanowires under light illumination. , 2010, , .		0
36	Temperature dependence of carbon nanofiber resistance. Nanotechnology, 2010, 21, 265707.	2.6	27

#	Article	IF	CITATIONS
37	Modeling carbon nanotube ultracapacitor., 2010,,.		O
38	Transport phenomena in carbon nanostructures. , 2010, , .		0
39	Compact high-frequency circuit model for one-dimensional carbon nanostructures. , 2010, , .		O
40	Frequency-Independent \$RC\$ Circuit Model for One-Dimensional Carbon Nanostructures. IEEE Electron Device Letters, 2010, 31, 263-265.	3.9	6
41	Reversible suppression of Coulomb staircase in InP nanowires with light illumination. , 2010, , .		0
42	Electrothermal Analysis of Breakdown in Carbon Nanofiber Interconnects. IEEE Electron Device Letters, 2009, 30, 469-471.	3.9	31
43	Extracting Resistances of Carbon Nanostructures in Vias. , 2009, , .		0
44	Contact resistance in carbon nanostructure via interconnects. Applied Physics Letters, 2009, 94, 163113.	3.3	33
45	Current capacity and thermal transport in carbon nanofiber interconnects., 2009,,.		2
46	Electrothermal transport in carbon nanofiber interconnects., 2009,,.		0
47	Electrothermal Transport in Carbon Nanostructures. ECS Transactions, 2009, 25, 487-493.	0.5	O
48	Inductance in One-Dimensional Nanostructures. IEEE Transactions on Electron Devices, 2009, 56, 1834-1839.	3.0	10
49	Electrode and substrate contacts in carbon nanofiber interconnects. , 2009, , .		0
50	Joule-heating dependence of carbon nanofiber resistance. , 2009, , .		0
51	Electrothermal Transport in Carbon Nanostructures. ECS Meeting Abstracts, 2009, , .	0.0	0
52	Length dependence of current-induced breakdown in carbon nanofiber interconnects. Applied Physics Letters, 2008, 92, 173110.	3.3	53
53	Analysis of carbon-based interconnect breakdown. , 2008, , .		0
54	Current-carrying Capacity of Carbon Nanofiber Interconnects. , 2008, , .		0

#	Article	IF	CITATIONS
55	Thermal and electrical transport in carbon nanofiber interconnects. , 2008, , .		0
56	Analysis of carbon-based interconnect breakdown. , 2008, , .		0
57	Improved contact for thermal and electrical transport in carbon nanofiber interconnects. Applied Physics Letters, 2008, 93, 102108.	3.3	34
58	Current-induced breakdown of carbon nanofiber interconnects., 2008,,.		1
59	Thermal and Electrical Transport in Carbon Nanofiber Interconnects. , 2008, , .		1
60	Temperature Modeling for Carbon Nanofiber Breakdown. , 2008, , .		6
61	Bright-field transmission imaging of carbon nanofibers on bulk substrate using conventional scanning electron microscopy. Journal of Vacuum Science & Technology B, 2007, 25, 1615.	1.3	4
62	Electrothermal Transport in Carbon Nanostructures. , 2007, , .		0
63	Monte Carlo simulation of scanning electron microscopy bright contrast images of suspended carbon nanofibers. Applied Physics Letters, 2007, 90, 083111.	3.3	20
64	Measurement and analysis of thermopower and electrical conductivity of an indium antimonide nanowire from a vapor-liquid-solid method. Journal of Applied Physics, 2007, 101, 023706.	2.5	81
65	Structural and Electrical Characterization of Carbon Nanofibers for Interconnect Via Applications. IEEE Nanotechnology Magazine, 2007, 6, 688-695.	2.0	71
66	Bright Contrast Imaging of Carbon Nanofiber-Substrate Interface using Scanning Electron Microscopy. Materials Research Society Symposia Proceedings, 2006, 963, 1.	0.1	0
67	Equivalent circuit model for carbon nanotube Schottky barrier: Influence of neutral polarized gas molecules. Applied Physics Letters, 2006, 88, 083106.	3.3	52
68	Bright contrast imaging of carbon nanofiber-substrate interface. Journal of Applied Physics, 2006, 100, 104305.	2.5	13
69	Modeling of carbon nanotube Schottky barrier modulation under oxidizing conditions. Physical Review B, 2004, 69, .	3.2	59
70	Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor. Nano Letters, 2004, 4, 1247-1252.	9.1	681
71	Direct Integration of Metal Oxide Nanowire in Vertical Field-Effect Transistor. Nano Letters, 2004, 4, 651-657.	9.1	264
72	Anisotropic Metal-Insulator Transition in Epitaxial Thin Films. Physical Review Letters, 2004, 92, 226404.	7.8	26

#	Article	IF	Citations
73	Nanoelectronics Applications. , 2004, , 163-193.		3
74	Modeling of kink-shaped carbon-nanotube Schottky diode with gate bias modulation. Applied Physics Letters, 2002, 80, 4027-4029.	3.3	25
75	Competing Classical and Quantum Effects in Shape Relaxation of a Metallic Island. Physical Review Letters, 2002, 89, 256101.	7.8	43
76	Modeling of electronic transport in scanning tunneling microscope tip–carbon nanotube systems. Applied Physics Letters, 2001, 78, 1739-1741.	3.3	22
77	Analysis of submicron carbon nanotube field-effect transistors. Applied Physics Letters, 2000, 76, 628-630.	3.3	29
78	Substrate for atomic chain electronics. Physical Review B, 1999, 59, 15430-15436.	3.2	14
79	Substrate effects on electronic properties of atomic chains. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 1463-1468.	2.1	2
80	Doping scheme of semiconducting atomic chains. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 1403-1408.	2.1	4
81	Atomic wires and their electronic properties. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1997, 15, 1019.	1.6	8
82	Transport properties along a finite-length atomic chain. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 1280-1284.	2.1	5
83	Even-odd conductance oscillation in atomic wires. Solid State Communications, 1997, 102, 779-783.	1.9	13
84	Energy band for manipulated atomic structures of Si, GaAs, and Mg on an insulating substrate. Physical Review B, 1996, 54, 1902-1908.	3.2	4
85	Energy band of manipulated atomic structures on an insulator substrate. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1996, 14, 1243.	1.6	10
86	Monte Carlo simulation of hole transport in strained Si1 \hat{a} 'xGex. Solid-State Electronics, 1995, 38, 881-890.	1.4	48
87	Velocity overshoot in a modulation-doped Si/Si1-xGexstructure. Semiconductor Science and Technology, 1994, 9, 775-777.	2.0	8
88	Monte Carlo study of the low-temperature mobility of electrons in a strained Si layer grown on aSi1â^'xGexsubstrate. Physical Review B, 1994, 49, 1875-1881.	3.2	12
89	In-plane transport properties of Si/Si/sub 1-x/Ge/sub x/ structure and its FET performance by computer simulation. IEEE Transactions on Electron Devices, 1994, 41, 1513-1522.	3.0	70
90	Electron transport properties of a strained Si layer on a relaxed Si1â^'xGexsubstrate by Monte Carlo simulation. Applied Physics Letters, 1993, 62, 2661-2663.	3.3	92

#	Article	IF	CITATIONS
91	Magnetotransport properties of lateral-surface superlattices by molecular-dynamics Monte Carlo simulation. Physical Review B, 1993, 47, 1444-1452.	3.2	8
92	Coupled molecular-dynamics Monte Carlo study of the transport properties of lateral surface superlattices. Physical Review B, 1993, 47, 6416-6426.	3.2	7
93	Monte Carlo simulation of diffusion of interacting electrons in lateral surface superlattices. Physical Review B, 1993, 48, 8076-8082.	3.2	1
94	High-field electron transport in quantum wires studied by solution of the Boltzmann equation. Physical Review B, 1989, 40, 6265-6271.	3.2	33
95	Currentâ€injection Josephson latch employing a singleâ€flux quantum. I. Journal of Applied Physics, 1986, 59, 3196-3201.	2.5	2
96	Currentâ€injection Josephson latch employing a singleâ€flux quantum. II. Journal of Applied Physics, 1986, 59, 3202-3207.	2.5	1
97	Nanotechnology in the development of future computing systems. , 0, , .		1