Xingjun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1026882/publications.pdf

Version: 2024-02-01

		567281	752698
20	663	15	20
papers	citations	h-index	g-index
20	20	20	793
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Boosting the Selfâ€Trapped Exciton Emission in Alloyed Cs ₂ (Ag/Na)InCl ₆ Double Perovskite via Cu ⁺ Doping. Advanced Science, 2022, 9, e2103724.	11.2	64
2	A Novel Near-infrared Responsive Lanthanide Upconversion Nanoplatform for Drug Delivery Based on Photocleavage of Cypate [※] . Acta Chimica Sinica, 2022, 80, 423.	1.4	2
3	Luminescent nanoâ€bioprobes based on NIR dye/lanthanide nanoparticle composites. Aggregate, 2021, 2, e59.	9.9	24
4	Synergistic Lysozymeâ€Photodynamic Therapy Against Resistant Bacteria based on an Intelligent Upconversion Nanoplatform. Angewandte Chemie - International Edition, 2021, 60, 19201-19206.	13.8	67
5	Synergistic Lysozymeâ€Photodynamic Therapy Against Resistant Bacteria based on an Intelligent Upconversion Nanoplatform. Angewandte Chemie, 2021, 133, 19350-19355.	2.0	11
6	<i>In situ</i> confined growth of ultrasmall perovskite quantum dots in metal–organic frameworks and their quantum confinement effect. Nanoscale, 2020, 12, 17113-17120.	5.6	28
7	Luminescent lanthanide metal–organic framework nanoprobes: from fundamentals to bioapplications. Nanoscale, 2020, 12, 15021-15035.	5.6	65
8	Multiplexed intracellular detection based on dual-excitation/dual-emission upconversion nanoprobes. Nano Research, 2020, 13, 1955-1961.	10.4	24
9	Lanthanide Metal–Organic Framework Nanoprobes for the In Vitro Detection of Cardiac Disease Markers. ACS Applied Materials & Interfaces, 2019, 11, 43989-43995.	8.0	46
10	A New Class of Blueâ€LEDâ€Excitable NIRâ€II Luminescent Nanoprobes Based on Lanthanideâ€Doped CaS Nanoparticles. Angewandte Chemie - International Edition, 2019, 58, 9556-9560.	13.8	88
11	A New Class of Blueâ€LEDâ€Excitable NIRâ€II Luminescent Nanoprobes Based on Lanthanideâ€Doped CaS Nanoparticles. Angewandte Chemie, 2019, 131, 9656-9660.	2.0	6
12	Cation-Induced Strategy toward an Hourglass-Shaped Cu ₆ 1 ₇ [–] Cluster and Its Color-Tunable Luminescence. Chemistry of Materials, 2017, 29, 8093-8099.	6.7	37
13	The dynamic response of a flexible indium based metal–organic framework to gas sorption. Chemical Communications, 2016, 52, 2277-2280.	4.1	36
14	Two microporous metal–organic frameworks constructed from trinuclear cobalt(<scp>ii</scp>) and cadmium(<scp>ii</scp>) cluster subunits. CrystEngComm, 2016, 18, 2239-2243.	2.6	11
15	A facile "ship-in-a-bottle―approach to construct nanorattles based on upconverting lanthanide-doped fluorides. Nano Research, 2016, 9, 187-197.	10.4	37
16	Increase in pore size and gas uptake capacity in indium-organic framework materials. Journal of Materials Chemistry A, 2013, 1, 9075.	10.3	29
17	Sorption behaviour in a unique 3,12-connected zinc–organic framework with 2.4 nm cages. Journal of Materials Chemistry A, 2013, 1, 10631.	10.3	34
18	Structural evolution via modifying (6,3) layer: from inclined polycatenation to parallel polyrotaxane-like interpenetration. CrystEngComm, 2013, 15, 8426.	2.6	10

Xingjun Li

#	Article	IF	CITATIONS
19	Three novel 3D coordination polymers based on a flexible multisite cyclotetraphosphazene ligand. Dalton Transactions, 2012, 41, 14038.	3.3	29
20	Topological variability of Zn(ii) and Co(ii) 3D coordination polymers obtained through solvothermal in situ disulfide cleavage. CrystEngComm, 2011, 13, 6323.	2.6	15