Oh-Shim Joo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1026850/publications.pdf

Version: 2024-02-01

80 4,034 31 62 papers citations h-index g-index

82 82 82 82 5603

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Recent trends in development of hematite (\hat{l} ±-Fe2O3) as an efficient photoanode for enhancement of photoelectrochemical hydrogen production by solar water splitting. International Journal of Hydrogen Energy, 2021, 46, 23334-23357.	3.8	48
2	Template-Free Hydrothermal Growth of Nickel Sulfide Nanorods as High-Performance Electroactive Materials for Oxygen Evolution Reaction and Supercapacitors. Energy & Energy & 2021, 35, 6868-6879.	2.5	20
3	CulnS ₂ Photocathodes with Atomic Gradation-Controlled (Ta,Mo) <i>_x</i> (O,S) <i>_y</i> Passivation Layers for Efficient Photoelectrochemical H ₂ Production. ACS Applied Materials & Interfaces, 2021, 13, 58447-58457.	4.0	14
4	A perspective on practical solar to carbon monoxide production devices with economic evaluation. Sustainable Energy and Fuels, 2020, 4, 199-212.	2.5	33
5	pâ€CuInS ₂ /nâ€Polymer Semiconductor Heterojunction for Photoelectrochemical Hydrogen Evolution. ChemSusChem, 2020, 13, 6651-6659.	3.6	8
6	Titelbild: Photoelectrochemical CO ₂ Reduction with a Rhenium Organometallic Redox Mediator at Semiconductor/Aqueous Liquid Junction Interfaces (Angew. Chem. 46/2019). Angewandte Chemie, 2019, 131, 16481-16481.	1.6	0
7	Photoelectrochemical CO ₂ Reduction with a Rhenium Organometallic Redox Mediator at Semiconductor/Aqueous Liquid Junction Interfaces. Angewandte Chemie - International Edition, 2019, 58, 16395-16399.	7.2	17
8	Photoelectrochemical CO 2 Reduction with a Rhenium Organometallic Redox Mediator at Semiconductor/Aqueous Liquid Junction Interfaces. Angewandte Chemie, 2019, 131, 16547-16551.	1.6	8
9	Design of an amorphous TaO _x multifunctional interfacial layer on photocathodes for photoelectrochemical H ₂ evolution. Journal of Materials Chemistry A, 2019, 7, 2041-2047.	5.2	15
10	Directly synthesized silver nanoparticles on gas diffusion layers by electrospray pyrolysis for electrochemical CO2 reduction. Electrochimica Acta, 2019, 303, 118-124.	2.6	21
11	Charge transportation at cascade energy structure interfaces of CulnxGa1-xSeyS2-y/CdS/ZnS for spontaneous water splitting. Electrochimica Acta, 2019, 297, 633-640.	2.6	11
12	Enhanced Water Oxidation Photoactivity of Nano-Architectured α-Fe2O3–WO3 Composite Synthesized by Single-Step Hydrothermal Method. Journal of Electronic Materials, 2018, 47, 2359-2365.	1.0	5
13	Efficient hydrogen evolution performance of phase-pure NiS electrocatalysts grown on fluorine-doped tin oxide-coated glass by facile chemical bath deposition. International Journal of Hydrogen Energy, 2018, 43, 13022-13031.	3.8	15
14	Insight into Charge Separation in WO ₃ /BiVO ₄ Heterojunction for Solar Water Splitting. ACS Applied Materials & Samp; Interfaces, 2017, 9, 19780-19790.	4.0	142
15	Electrochemical deposition of cadmium selenide films and their properties: a review. Journal of Solid State Electrochemistry, 2017, 21, 2517-2530.	1.2	19
16	Spontaneous solar water splitting by DSSC/CIGS tandem solar cells. Solar Energy, 2016, 135, 821-826.	2.9	11
17	Highly stable tandem solar cell monolithically integrating dye-sensitized and CIGS solar cells. Scientific Reports, 2016, 6, 30868.	1.6	25
18	D-sorbitol-induced phase control of TiO2 nanoparticles and its application for dye-sensitized solar cells. Scientific Reports, 2016, 6, 20103.	1.6	93

#	Article	IF	CITATIONS
19	Enhanced Photocurrents with ZnS Passivated Cu(In,Ga)(Se,S) ₂ Photocathodes Synthesized Using a Nonvacuum Process for Solar Water Splitting. Journal of the American Chemical Society, 2016, 138, 15673-15681.	6.6	72
20	Electrocatalytic behavior of glassy carbon electrode modified with ruthenium nanoparticles and ruthenium film. Journal of Applied Electrochemistry, 2016, 46, 459-468.	1.5	10
21	Highâ€Performance Platinumâ€Free Dyeâ€Sensitized Solar Cells with Molybdenum Disulfide Films as Counter Electrodes. ChemPhysChem, 2015, 16, 3959-3965.	1.0	27
22	Effect of the Si/TiO ₂ /BiVO ₄ Heterojunction on the Onset Potential of Photocurrents for Solar Water Oxidation. ACS Applied Materials & Samp; Interfaces, 2015, 7, 5788-5796.	4.0	60
23	La ₂ O ₃ -encapsulated SnO ₂ nanocrystallite-based photoanodes for enhanced DSSCs performance. Dalton Transactions, 2015, 44, 3075-3081.	1.6	12
24	Calcium carbonate electronic-insulating layers improve the charge collection efficiency of tin oxide photoelectrodes in dye-sensitized solar cells. Electrochimica Acta, 2015, 167, 379-387.	2.6	7
25	Sputtering and sulfurization-combined synthesis of a transparent WS ₂ counter electrode and its application to dye-sensitized solar cells. RSC Advances, 2015, 5, 103567-103572.	1.7	32
26	Highly stable RuO ₂ /SnO ₂ nanocomposites as anode electrocatalysts in a PEM water electrolysis cell. International Journal of Energy Research, 2014, 38, 875-883.	2.2	45
27	Spraying distance and titanium chloride surface treatment effects on DSSC performance of electrosprayed SnO ₂ photoanodes. RSC Advances, 2014, 4, 35919.	1.7	15
28	Synthesis of Bi ₂ WO ₆ photoanode on transparent conducting oxide substrate with low onset potential for solar water splitting. RSC Advances, 2014, 4, 24032-24037.	1.7	13
29	Morphology control of one-dimensional heterojunctions for highly efficient photoanodes used for solar water splitting. Journal of Materials Chemistry A, 2014, 2, 11408.	5.2	52
30	Mass scale sugar-mediated green synthesis and DSSCs application of tin oxide nanostructured photoanode: Effect of zinc sulphide layering on charge collection efficiency. Electrochimica Acta, 2014, 147, 408-417.	2.6	13
31	Role of HA additive in quantum dot solar cell with Co[(bpy) ₃] ^{2+/3+} -based electrolyte. RSC Advances, 2014, 4, 26907-26911.	1.7	21
32	Influence of TiO2 nanotube morphology and TiCl4 treatment on the charge transfer in dye-sensitized solar cells. Applied Physics A: Materials Science and Processing, 2013, 112, 733-737.	1,1	10
33	Cobalt sulfide thin films for counter electrodes of dye-sensitized solar cells with cobalt complex based electrolytes. Electrochimica Acta, 2013, 114, 745-749.	2.6	20
34	Construction of efficient CdS–TiO2 heterojunction for enhanced photocurrent, photostability, and photoelectron lifetimes. Journal of Colloid and Interface Science, 2013, 402, 94-99.	5.0	35
35	Bismuth oxide nanoplates-based efficient DSSCs: Influence of ZnO surface passivation layer. Electrochimica Acta, 2013, 111, 593-600.	2.6	42
36	Low temperature chemically synthesized rutile TiO2 photoanodes with high electron lifetime for organic dye-sensitized solar cells. Chemical Communications, 2013, 49, 2921.	2.2	37

#	Article	IF	Citations
37	Facile preparation of nanostructured \hat{l} ±-Fe2O3 thin films with enhanced photoelectrochemical water splitting activity. Journal of Materials Chemistry A, 2013, 1, 5554.	5.2	42
38	Enhanced photoanode properties of CdS nanoparticle sensitized TiO2 nanotube arrays by solvothermal synthesis. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 259, 1-9.	2.0	47
39	Templateâ€free electrochemical synthesis and electrochemical supercapacitors application of polyaniline nanobuds. Journal of Applied Polymer Science, 2013, 128, 3660-3664.	1.3	15
40	Monoclinic WO3 nanorods–rutile TiO2 nanoparticles core–shell interface for efficient DSSCs. Dalton Transactions, 2013, 42, 10085.	1.6	23
41	Electrospray deposited Pt film for hydrogen evolution reaction: Effect of solvent solution. Applied Surface Science, 2013, 265, 222-225.	3.1	6
42	Photoelectrochemical water splitting at nanostructured \hat{l} ±-Fe2O3 electrodes. International Journal of Hydrogen Energy, 2012, 37, 13989-13997.	3.8	83
43	Electrospray-deposited nickel ferrite thin film electrode for hydrogen production in PV-assisted water electrolysis system. International Journal of Energy Research, 2012, 36, 1044-1050.	2.2	10
44	Structural analysis and dye-sensitized solar cell application of electrodeposited tin oxide nanoparticles. Materials Letters, 2012, 79, 29-31.	1.3	21
45	Spray pyrolytic deposition of polycrystalline Cu2S thin films. Materials Chemistry and Physics, 2011, 131, 525-528.	2.0	12
46	Recent status of chemical bath deposited metal chalcogenide and metal oxide thin films. Current Applied Physics, 2011, 11, 117-161.	1.1	309
47	Metal oxide thin film based supercapacitors. Current Applied Physics, 2011, 11, 255-270.	1.1	758
48	Durability study of electrospray deposited Pt film electrode for hydrogen production in PV assisted water electrolysis system. International Journal of Hydrogen Energy, 2011, 36, 3347-3353.	3.8	10
49	Cobalt Ferrite Nanocrystallites for Sustainable Hydrogen Production Application. International Journal of Electrochemistry, 2011, 2011, 1-6.	2.4	37
50	Low Pt loading, wide area electrospray deposition technique for highly efficient hydrogen evolving electrode in photoelectrochemical cell. International Journal of Hydrogen Energy, 2010, 35, 6541-6548.	3.8	29
51	NAD+ hydrogenation on Au electrode deposited on modified glassy carbon. Electrochemistry Communications, 2010, 12, 1371-1374.	2.3	13
52	Electrodeposited porous and amorphous copper oxide film for application in supercapacitor. Materials Chemistry and Physics, 2009, 114, 6-9.	2.0	193
53	Synthesis of cobalt oxide interconnected flacks and nano-worms structures using low temperature chemical bath deposition. Journal of Alloys and Compounds, 2009, 478, 594-598.	2.8	54
54	Synthesis of photosensitive nanograined TiO2 thin films by SILAR method. Journal of Alloys and Compounds, 2009, 478, 711-715.	2.8	48

#	Article	IF	Citations
55	Cu–Zn–Cr2O3 Catalysts for Dimethyl Ether Synthesis: Structure and Activity Relationship. Catalysis Letters, 2008, 123, 142-149.	1.4	27
56	Simple chemical method for nanoporous network of In2S3 platelets for buffer layer in CIS solar cells. Journal of Materials Processing Technology, 2008, 201, 775-779.	3.1	51
57	Electrodeposition of photoactive 1D gallium selenide quantum dots. Electrochimica Acta, 2008, 54, 829-834.	2.6	18
58	Growth of TiO2 nanorods by chemical bath deposition method. Applied Surface Science, 2008, 255, 2682-2687.	3.1	56
59	Porous Weblike Network of InSe on a Compact Layer by Electrodeposition. Journal of the Electrochemical Society, 2008, 155, E57.	1.3	3
60	Spray deposited amorphous RuO2 for an effective use in electrochemical supercapacitor. Electrochemistry Communications, 2007, 9, 504-510.	2.3	205
61	Unprecedented coloration of rutile titanium dioxide nanocrystalline thin films. Micron, 2007, 38, 85-90.	1.1	16
62	Electrosynthesis of molybdenum oxide thin films onto stainless substrates. Electrochemistry Communications, 2006, 8, 273-278.	2.3	24
63	Formation of self-assembled quantum dots of iron oxide thin films by spray pyrolysis from non-aqueous medium. Applied Surface Science, 2006, 252, 8039-8042.	3.1	10
64	A simple and low temperature process for super-hydrophilic rutile TiO 2 thin films growth. Applied Surface Science, 2006, 253, 581-585.	3.1	14
65	Spray pyrolytic synthesis of large area NiO x thin films from aqueous nickel acetate solutions. Applied Surface Science, 2006, 253, 1781-1786.	3.1	94
66	Preparation and characterization of titanium dioxide thin films by SILAR method. Materials Chemistry and Physics, 2006, 97, 5-9.	2.0	29
67	Improved performance of dense TiO2/CdSe coupled thin films by low temperature process. Electrochimica Acta, 2005, 50, 2453-2459.	2.6	61
68	Electrodeposition of TiO2 and RuO2 thin films for morphology-dependent applications. Ultramicroscopy, 2005, 105, 267-274.	0.8	37
69	A chemical route to room-temperature synthesis of nanocrystalline TiO2 thin films. Applied Surface Science, 2005, 246, 72-76.	3.1	16
70	Rapid growth of nanocrystalline CulnS2 thin films in alkaline medium at room temperature. Applied Surface Science, 2005, 252, 1981-1987.	3.1	10
71	A simple electrosynthesis route for preparation of nanocrystalline titanium sulphide film. Journal of Materials Science, 2005, 40, 5771-5774.	1.7	1
72	Cathodic electrodeposition of amorphous titanium oxide films from an alkaline solution bath. Journal of Materials Science, 2005, 40, 491-494.	1.7	5

#	Article	IF	CITATIONS
73	Room temperature chemical deposition of amorphous TiO2thin films from Ti(III) chloride solution. Journal of Materials Science, 2004, 39, 2915-2918.	1.7	43
74	Cathodic electrodeposition of amorphous titanium oxide films from an alkaline solution bath. Journal of Materials Science, 2004, 39, 6607-6610.	1.7	27
75	Performance of supercapacitor with electrodeposited ruthenium oxide film electrodesâ€"effect of film thickness. Journal of Power Sources, 2004, 134, 148-152.	4.0	163
76	Structural change of Cu/ZnO by reduction of ZnO in Cu/ZnO with methanol. Catalysis Letters, 2000, 68, 49-54.	1.4	42
77	ZnO/Cr2O3 catalyst for reverse-water-gas-shift reaction of CAMERE process. Korean Journal of Chemical Engineering, 2000, 17, 719-722.	1.2	33
78	Carbon Dioxide Hydrogenation To Form Methanol via a Reverse-Water-Gas-Shift Reaction (the CAMERE) Tj ETQq	0 0 0 rgB1	Overlock 10
79	Migration and reduction of formate to form methanol on CuZnO catalysts. Applied Catalysis A: General, 1996, 135, 273-286.	2.2	40
80	Deactivation of Cu/ZnO catalyst during dehydrogenation of methanol. Catalysis Letters, 1995, 35, 303-311.	1.4	29