
Hartwig E Frimmel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10266730/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genesis of the Hebaoshan gold deposit in Fujian Province of Southeast China: constraints from a combined fluid inclusion, H-O-C-S-Pb-He-Ar isotope and geochronological study. Mineralium Deposita, 2022, 57, 13-34.	1.7	12
2	A template for an improved rock-based subdivision of the pre-Cryogenian timescale. Journal of the Geological Society, 2022, 179, .	0.9	18
3	In situ chemical and isotopic analyses and element mapping of multiple-generation pyrite: Evidence of episodic gold mobilization and deposition for the Qiucun epithermal gold deposit in Southeast China. American Mineralogist, 2022, 107, 1133-1148.	0.9	15
4	Age and fluid source of the sub-volcanic Zhaiping Ag–Pb–Zn deposit in the eastern Cathaysia Block (Fujian Province, Southeastern China). Mineralium Deposita, 2022, 57, 439-454.	1.7	2
5	Deciphering multiple ore-forming processes of the Shuangqishan orogenic gold deposit, Southeast China by in situ analysis of pyrite. Ore Geology Reviews, 2022, 142, 104730.	1.1	9
6	Depositional environment of polymictic conglomerate of the Gadag greenstone Belt, Western Dharwar Craton, south India: An insight for Neoarchean marginal sedimentation. Geological Journal, 2022, 57, 1262-1283.	0.6	1
7	Detrital zircon ages from Archaean conglomerates in the Singhbhum Craton, eastern India: implications on economic Au-U potential. Mineralium Deposita, 2022, 57, 1499-1514.	1.7	6
8	The minerals industry in the era of digital transition: An energy-efficient and environmentally conscious approach. Resources Policy, 2022, 78, 102851.	4.2	25
9	Integration of Machine Learning Algorithms with Gompertz Curves and Kriging to Estimate Resources in Gold Deposits. Natural Resources Research, 2021, 30, 39-56.	2.2	20
10	Preâ€Klondikean oxidation prepared the ground for Broken Hillâ€ŧype mineralization in South Africa. Terra Nova, 2021, 33, 168-173.	0.9	10
11	Placer Deposits and Processes. , 2021, , 877-898.		0
12	Early Paleozoic Orogenic Gold Deposit in the Cathaysia Block, China: A first example from the Shuangqishan Deposit. Gondwana Research, 2021, 91, 231-253.	3.0	13
13	A magmaticâ€hydrothermal origin of the Xinfang gold deposit, Liaodong Peninsula, China, revealed by inâ€situ <scp>S–Pb</scp> isotopes and trace element analyses of pyrite. Resource Geology, 2021, 71, 144-160.	0.3	5
14	Neoarchaean Felsic Volcanic Rocks in Tracing Evolution of Arcs: An Insight from Geochemical Data of the Gadag Schist Belt, Western Dharwar Craton. Journal of the Geological Society of India, 2021, 97, 351-362.	0.5	1
15	Temperature-Controlled Ore Evolution in Orogenic Gold Systems Related to Synchronous Granitic Magmatism: An Example from the Iron Quadrangle Province, Brazil. Economic Geology, 2021, 116, 937-962.	1.8	8
16	Syn-metamorphic sulfidation of the Gamsberg zinc deposit, South Africa. Mineralogy and Petrology, 2021, 115, 709.	0.4	7
17	Valorisation of mine waste - Part I: Characteristics of, and sampling methodology for, consolidated mineralised tailings by using Witwatersrand gold mines (South Africa) as an example. Journal of Environmental Management, 2021, 295, 113013.	3.8	24
18	Valorisation of mine waste - Part II: Resource evaluation for consolidated and mineralised mine waste using the Central African Copperbelt as an example. Journal of Environmental Management, 2021, 299, 113553.	3.8	14

#	Article	IF	CITATIONS
19	Local and Target Exploration of Conglomerate-Hosted Gold Deposits Using Machine Learning Algorithms: A Case Study of the Witwatersrand Gold Ores, South Africa. Natural Resources Research, 2020, 29, 135-159.	2.2	15
20	Geometallurgical Approach for Implications of Ore Blending on Cyanide Leaching and Adsorption Behavior of Witwatersrand Gold Ores, South Africa. Natural Resources Research, 2020, 29, 1007-1030.	2.2	16
21	Petrological, geochemical and isotopic data of Neoproterozoic rock units from Uruguay and South Africa: Correlation of basement terranes across the South Atlantic. Gondwana Research, 2020, 80, 12-32.	3.0	16
22	Geochemical and spectroscopic investigation of apatite in the Siilinjävi carbonatite complex: Keys to understanding apatite forming processes and assessing potential for rare earth elements. Applied Geochemistry, 2020, 123, 104778.	1.4	15
23	High-Grade Magmatic Platinum Group Element-Cu(-Ni) Sulfide Mineralization Associated with the Rathbun Offset Dike of the Sudbury Igneous Complex (Ontario, Canada). Economic Geology, 2020, 115, 505-525.	1.8	5
24	Unravelling the processes controlling apatite formation in the Phalaborwa Complex (South Africa) based on combined cathodoluminescence, LA-ICPMS and in-situ O and Sr isotope analyses. Contributions To Mineralogy and Petrology, 2020, 175, 1.	1.2	22
25	The 127ÂMa gold mineralization in the Wulong deposit, Liaodong Peninsula, China: Constraints from molybdenite Re-Os, monazite U-Th-Pb, and zircon U-Pb geochronology. Ore Geology Reviews, 2020, 121, 103542.	1.1	36
26	Chapter 31: Geologic Evidence of Syngenetic Gold in the Witwatersrand Goldfields, South Africa. , 2020, , 645-668.		10
27	Hydrothermal Mineral Deposits. Springer Textbooks in Earth Sciences, Geography and Environment, 2020, , 379-404.	0.1	Ο
28	Sediments and Sedimentary Rocks. Springer Textbooks in Earth Sciences, Geography and Environment, 2020, , 417-452.	0.1	1
29	Oxides and Hydroxides. Springer Textbooks in Earth Sciences, Geography and Environment, 2020, , 111-126.	0.1	1
30	Highly siderophile elements in Archaean and Palaeoproterozoic marine shales of the Kaapvaal Craton, South Africa. Mineralogy and Petrology, 2019, 113, 307-327.	0.4	7
31	The Witwatersrand Basin and Its Gold Deposits. Regional Geology Reviews, 2019, , 255-275.	1.2	24
32	Very distant Sudbury impact dykes revealed by drilling the Temagami geophysical anomaly. Precambrian Research, 2019, 324, 220-235.	1.2	4
33	Episodic concentration of gold to ore grade through Earth's history. Earth-Science Reviews, 2018, 180, 148-158.	4.0	52
34	Where does a continent prefer to break up? Some lessons from the South Atlantic margins. Gondwana Research, 2018, 53, 9-19.	3.0	51
35	Geochronology, stratigraphy and geochemistry of Cambro-Ordovician, Silurian and Devonian volcanic rocks of the Saxothuringian Zone in NE Bavaria (Germany)—new constraints for Gondwana break up and ocean–island magmatism. International Journal of Earth Sciences, 2018, 107, 359-377.	0.9	8
36	Genesis of the Wulong gold deposit, northeastern North China Craton: Constraints from fluid inclusions, H-O-S-Pb isotopes, and pyrite trace element concentrations. Ore Geology Reviews, 2018, 102, 313-337.	1,1	54

#	Article	IF	CITATIONS
37	Provenance and Geochemical Variations in Shales of the Mesoarchean Witwatersrand Supergroup. Journal of Geology, 2017, 125, 399-422.	0.7	27
38	Ore minerals and geochemical characterization of the Dungash gold deposit, South Eastern Desert, Egypt. Arabian Journal of Geosciences, 2017, 10, 1.	0.6	6
39	Isoferroplatinum-pyrrhotite-troilite intergrowth as evidence of desulfurization in the Merensky Reef at Rustenburg (western Bushveld Complex, South Africa). Mineralogical Magazine, 2016, 80, 1041-1053.	0.6	12
40	Möwe Bay Dykes, Northwestern Namibia: Geochemical and geochronological evidence for different mantle source regions during the Cretaceous opening of the South Atlantic. Chemical Geology, 2016, 444, 141-157.	1.4	13
41	Metamorphic and age constraints on crustal reworking in the western H.U. Sverdrupfjella: implications for the evolution of western Dronning Maud Land, Antarctica. Journal of the Geological Society, 2015, 172, 499-518.	0.9	13
42	Reaction textures and metamorphic evolution of sapphirine–spinel-bearing and associated granulites from Diguva Sonaba, Eastern Ghats Mobile Belt, India. Geological Magazine, 2015, 152, 316-340.	0.9	13
43	First whiffs of atmospheric oxygen triggered onset of crustal gold cycle. Mineralium Deposita, 2015, 50, 5-23.	1.7	51
44	Geochemical and isotopic composition of Pan-African metabasalts from southwestern Gondwana: Evidence of Cretaceous South Atlantic opening along a Neoproterozoic back-arc. Lithos, 2014, 202-203, 363-381.	0.6	33
45	Uraninite chemistry as forensic tool for provenance analysis. Applied Geochemistry, 2014, 48, 104-121.	1.4	97
46	A Giant Mesoarchean Crustal Gold-Enrichment Episode <subtitle>Possible Causes and Consequences for Exploration</subtitle> . , 2014, , .		14
47	A new lithostratigraphic subdivision and geodynamic model for the Pan-African western Saldania Belt, South Africa. Precambrian Research, 2013, 231, 218-235.	1.2	74
48	Southern African perspectives on the long-term morpho-tectonic evolution of cratonic interiors. Tectonophysics, 2013, 601, 177-191.	0.9	22
49	Trace element distribution in uraninite from Mesoarchaean Witwatersrand conglomerates (South) Tj ETQq1 1 0	.784314 rg 1.7	gBT_/Overlock
50	A two-stage evolution model for the Amantaytau orogenic-type gold deposit in Uzbekistan. Mineralium Deposita, 2013, 48, 825-840.	1.7	29
51	Reply to comments by T. Oberthür on "Trace element distribution in uraninite from Mesoarchaean Witwatersrand conglomerates (South Africa) supports placer model and magmatogenic source― Mineralium Deposita, 2013, 48, 1051-1053.	1.7	3
52	The Influence of Inherited Structures on Dike Emplacement during Gondwana Breakup in Southwestern Africa. Journal of Geology, 2013, 121, 455-474.	0.7	19
53	Geochemistry, geochronology and Sr–Nd–Hf isotopes of two Mesozoic granitoids in the Xiaoqinling gold district: Implication for large-scale lithospheric thinning in the North China Craton. Chemical Geology, 2012, 294-295, 173-189.	1.4	92
54	LA-ICP-MS trace element analysis of pyrite from the Xiaoqinling gold district, China: Implications for ore genesis. Ore Geology Reviews, 2011, 43, 142-153.	1.1	149

#	Article	IF	CITATIONS
55	Neoproterozoic geodynamic evolution of SW-Gondwana: a southern African perspective. International Journal of Earth Sciences, 2011, 100, 323-354.	0.9	134

Reply to Reimer and Mossman. Comment on "Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits―by Koglin et al. (Mineralium Deposita 42:) Tj ETQq0 0 0 rgBT1¢Øverlock010 Tf 50 6

57	Chapter 16 The Chameis Gate Member, Chameis Group, Marmora Terrane, Namibia. Geological Society Memoir, 2011, 36, 217-221.	0.9	0
58	Chapter 18 The Karoetjes Kop and Bloupoort formations, Gifberg Group, South Africa. Geological Society Memoir, 2011, 36, 233-237.	0.9	1
59	Chapter 17 The Kaigas and Numees formations, Port Nolloth Group, in South Africa and Namibia. Geological Society Memoir, 2011, 36, 223-231.	0.9	4
60	Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits. Mineralium Deposita, 2010, 45, 259-280.	1.7	209
61	Deep solid-state equilibration and deep melting of plagioclase-free spinel peridotite from the slow-spreading Mid-Atlantic Ridge, ODP Leg 153. Mineralogy and Petrology, 2010, 100, 185-200.	0.4	6
62	Hafnium isotope homogenization during metamorphic zircon growth in amphibolite-facies rocks: Examples from the Shackleton Range (Antarctica). Geochimica Et Cosmochimica Acta, 2010, 74, 4740-4758.	1.6	76
63	On the reliability of stable carbon isotopes for Neoproterozoic chemostratigraphic correlation. Precambrian Research, 2010, 182, 239-253.	1.2	73
64	New constraints on the auriferous Witwatersrand sediment provenance from combined detrital zircon U–Pb and Lu–Hf isotope data for the Eldorado Reef (Central Rand Group, South Africa). Precambrian Research, 2010, 183, 817-824.	1.2	41
65	Early Cambrian ocean anoxia in South China. Nature, 2009, 459, E5-E6.	13.7	135
66	Chapter 5.5 Orogenic Tectono-Thermal Evolution. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 2009, 16, 205-218.	0.2	2
67	Chapter 8 Tectonic Events and Palaeogeographic Evolution of Southwestern Gondwana in the Neoproterozoic and Cambrian. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 2009, , 295-316.	0.2	27
68	Chapter 5.2 Continental Rifting. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 2009, 16, 153-159.	0.2	4
69	Chapter 5.8 Geodynamic Synthesis of the Damara Orogen Sensu Lato. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 2009, , 231-235.	0.2	6
70	Chapter 5.3 Passive Continental Margin Evolution. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 2009, , 161-181.	0.2	4
71	Chapter 5.1 Configuration of Pan-African Orogenic Belts in Southwestern Africa. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 2009, 16, 145-151.	0.2	11
72	Chapter 5.6 Syn- to Post-Orogenic Magmatism. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 2009, , 219-226.	0.2	0

#	Article	IF	CITATIONS
73	Chapter 5.7 Mineral Deposits. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 2009, 16, 227-229.	0.2	0
74	Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chemical Geology, 2009, 258, 338-353.	1.4	328
75	Chapter 5.4 Syn- to Late-Orogenic Sedimentary Basins of Southwestern Africa. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 2009, 16, 183-203.	0.2	15
76	Chapter 1 The Neoproterozoic and Cambrian: A Time of Upheavals, Extremes and Innovations. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 2009, 16, 3-11.	0.2	9
77	An evaporitic facies in Neoproterozoic post-glacial carbonates: The Gifberg Group, South Africa. Gondwana Research, 2008, 13, 453-468.	3.0	24
78	Neoproterozoic–Early Paleozoic events in Southwest Gondwana: Introduction. Gondwana Research, 2008, 13, 435-436.	3.0	9
79	Earth's continental crustal gold endowment. Earth and Planetary Science Letters, 2008, 267, 45-55.	1.8	158
80	West Gondwana amalgamation based on detrital zircon ages from Neoproterozoic Ribeira and Dom Feliciano belts of South America and comparison with coeval sequences from SW Africa. Geological Society Special Publication, 2008, 294, 239-256.	0.8	121
81	Geochemistry and tectonic setting of mafic rocks in western Dronning Maud Land, East Antarctica: implications for the geodynamic evolution of the Proterozoic Maud Belt. Journal of the Geological Society, 2007, 164, 465-475.	0.9	42
82	Tectono-thermal evolution of the Maud Belt: New SHRIMP U–Pb zircon data from Gjelsvikfjella, Dronning Maud Land, East Antarctica. Precambrian Research, 2006, 150, 95-121.	1.2	53
83	Provenance and chemostratigraphy of the Neoproterozoic West Congolian Group in the Democratic Republic of Congo. Journal of African Earth Sciences, 2006, 46, 221-239.	0.9	91
84	Archaean atmospheric evolution: evidence from the Witwatersrand gold fields, South Africa. Earth-Science Reviews, 2005, 70, 1-46.	4.0	145
85	Metamorphic evolution of the Maud Belt: P–T–t path for high-grade gneisses in Gjelsvikfjella, Dronning Maud Land, East Antarctica. Journal of African Earth Sciences, 2005, 43, 505-524.	0.9	22
86	Organic-walled microfossils and biostratigraphy of the upper Port Nolloth Group (Namibia): implications for latest Neoproterozoic glaciations. Geological Magazine, 2005, 142, 539-559.	0.9	65
87	A connection between the Neoproterozoic Dom Feliciano (Brazil/Uruguay) and Gariep (Namibia/South) Tj ETQq1 2 2005, 139, 195-221.	l 0.78431 1.2	4 rgBT /Ove 212
88	The world's largest gold province: Implications on Archaean atmospheric evolution. , 2005, , 949-952.		0
89	Vendian-Cambrian of Western Gondwana: Introduction. Gondwana Research, 2004, 7, 659-660.	3.0	4
90	Late Vendian Closure of the Adamastor Ocean: Timing of Tectonic Inversion and Syn-orogenic Sedimentation in the Gariep Basin. Gondwana Research, 2004, 7, 685-699.	3.0	60

#	Article	IF	CITATIONS
91	An Eburnean base metal source for sediment-hosted zinc-lead deposits in Neoproterozoic units of Namibia: Lead isotopic and geochemical evidence. Mineralium Deposita, 2004, 39, 328-343.	1.7	28
92	GEOLOGY: Genesis of the World's Largest Gold Deposits. Science, 2002, 297, 1815-1817.	6.0	16
93	Neoproterozoic tectonic and climatic evolution recorded in the Gariep Belt, Namibia and South Africa. Basin Research, 2002, 14, 55-67.	1.3	79
94	Chemostratigraphic correlation of carbonate successions in the Gariep and Saldania Belts, Namibia and South Africa. Basin Research, 2002, 14, 69-88.	1.3	89
95	The Richtersveld Igneous Complex, South Africa: Uâ€₽b Zircon and Geochemical Evidence for the Beginning of Neoproterozoic Continental Breakup. Journal of Geology, 2001, 109, 493-508.	0.7	160
96	A novel approach to double-spike Pb–Pb dating of carbonate rocks: examples from Neoproterozoic sequences in southern Africa. Chemical Geology, 2000, 171, 97-122.	1.4	70
97	Neoproterozoic tectono-thermal evolution of the Gariep Belt and its basement, Namibia and South Africa. Precambrian Research, 1998, 90, 1-28.	1.2	167
98	Chlorite Thermometry in the Witwatersrand Basin: Constraints on the Paleoproterozoic Geotherm in the Kaapvaal Craton, South Africa. Journal of Geology, 1997, 105, 601-616.	0.7	56
99	Detrital origin of hydrothermal Witwatersrand gold—a review. Terra Nova, 1997, 9, 192-197.	0.9	51
100	Geochemistry and tectonic setting of magmatic units in the Pan-African Gariep Belt, Namibia. Chemical Geology, 1996, 130, 101-121.	1.4	70
101	New Pb-Pb Single Zircon Age Constraints on the Timing of Neoproterozoic Glaciation and Continental Break-up in Namibia. Journal of Geology, 1996, 104, 459-469.	0.7	169
102	An Fe analogue of kinoshitalite from the Broken Hill massive sulfide deposit in the Namaqualand metamorphic complex, South Africa. American Mineralogist, 1995, 80, 833-840.	0.9	17
103	Morphology of Witwatersrand gold grains from the Basal Reef; evidence for their detrital origin. Economic Geology, 1993, 88, 237-248.	1.8	116
104	A case study of the postdepositional alteration of the Witwatersrand Basal Reef gold placer. Economic Geology, 1993, 88, 249-265.	1.8	81
105	Isotopic constraints on fluid/rock ratios in carbonate rocks: Barite-sulfide mineralization in the Schwaz Dolomite, Tyrol (Eastern Alps, Austria). Chemical Geology, 1991, 90, 195-209.	1.4	11