

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1026655/publications.pdf Version: 2024-02-01

		8208	11608
168	21,178	78	140
papers	citations	h-index	g-index
171 all docs	171 docs citations	171 times ranked	8275 citing authors

XIANC HU

#	Article	IF	CITATIONS
1	Steel Fiber–Matrix Interfacial Bond in Ultra-High Performance Concrete: A Review. Engineering, 2023, 22, 215-232.	3.2	25
2	Adsorption and dispersion capability of polycarboxylate-based superplasticizers: a review. Journal of Sustainable Cement-Based Materials, 2022, 11, 319-344.	1.7	9
3	Magneto-rheology control in 3D concrete printing: A rheological attempt. Materials Letters, 2022, 309, 131374.	1.3	12
4	A critical review on compressive behavior and empirical constitutive models of concrete. Construction and Building Materials, 2022, 323, 126572.	3.2	36
5	Magneto-responsive structural build-up of highly flowable cementitious paste in the presence of PCE superplasticizer. Construction and Building Materials, 2022, 327, 126925.	3.2	6
6	Upcycling sintering red mud waste for novel superfine composite mineral admixture and CO2 sequestration. Cement and Concrete Composites, 2022, 129, 104497.	4.6	22
7	Internal curing effect of saturated coral coarse aggregate in high-strength seawater sea sand concrete. Construction and Building Materials, 2022, 331, 127280.	3.2	19
8	Carbonation-hardening properties and ITZ microstructure of low-calcium CO2 sequestration binder mortar. Construction and Building Materials, 2022, 336, 127589.	3.2	17
9	Chloride binding behavior of synthesized reaction products in alkali-activated slag. Composites Part B: Engineering, 2022, 238, 109919.	5.9	20
10	Effect of polycarboxylate superplasticizers on the growth of ettringite in deionized water and synthetic cement pore solution. Construction and Building Materials, 2022, 341, 127602.	3.2	7
11	Effects of sodium doping on carbonation behavior of α-CS. Cement and Concrete Composites, 2022, 131, 104607.	4.6	8
12	Tensile properties deterioration of BFRP bars in simulated pore solution and real seawater sea sand concrete environment with varying alkalinities. Composites Part B: Engineering, 2022, 243, 110115.	5.9	42
13	Improvement of thermal and optical responses of short-term aged thermochromic asphalt binder by warm-mix asphalt technology. Journal of Cleaner Production, 2021, 279, 123675.	4.6	72
14	A review on seismic behavior of ultra-high performance concrete members. Advances in Structural Engineering, 2021, 24, 1054-1069.	1.2	21
15	Factors affecting the effectiveness of internal curing: A review. Construction and Building Materials, 2021, 267, 121017.	3.2	37
16	An improved method for separating styrene-butadiene-styrene triblock copolymer (SBS) and bitumen matrix from SBS modified bitumen. Fuel, 2021, 286, 119314.	3.4	9
17	Effect of Na2O concentration and water/binder ratio on carbonation of alkali-activated slag/fly ash cements. Construction and Building Materials, 2021, 269, 121258.	3.2	49
18	Mechanical behavior and durability of coral aggregate concrete and bonding performance with fiber-reinforced polymer (FRP) bars: A critical review. Journal of Cleaner Production, 2021, 289, 125652.	4.6	75

#	Article	IF	CITATIONS
19	Internal curing of blended cement pastes with ultraâ€low waterâ€toâ€cement ratio: Absorption/desorption kinetics of superabsorbent polymer. Journal of the American Ceramic Society, 2021, 104, 3603-3618.	1.9	7
20	Effect of PCEs with different structures on hydration and properties of cementitious materials with low water-to-binder ratio. Cement and Concrete Research, 2021, 142, 106343.	4.6	33
21	Quantitative assessment of the influence of external magnetic field on clustering of nano-Fe3O4 particles in cementitious paste. Cement and Concrete Research, 2021, 142, 106345.	4.6	31
22	Chloride migration in cement mortars with ultra-low water to binder ratio. Cement and Concrete Composites, 2021, 118, 103974.	4.6	23
23	Effects of SAP characteristics on internal curing of UHPC matrix. Construction and Building Materials, 2021, 280, 122530.	3.2	60
24	Autogenous shrinkage and drying shrinkage of recycled aggregate concrete: A review. Journal of Cleaner Production, 2021, 295, 126435.	4.6	75
25	Review on corrosion of steel reinforcement in alkali-activated concretes in chloride-containing environments. Construction and Building Materials, 2021, 293, 123484.	3.2	45
26	Rheological behavior of cement paste with nano-Fe3O4 under magnetic field: Magneto-rheological responses and conceptual calculations. Cement and Concrete Composites, 2021, 120, 104035.	4.6	33
27	Ambient temperature cured â€just-add-water' geopolymer for 3D concrete printing applications. Cement and Concrete Composites, 2021, 121, 104060.	4.6	72
28	Possibilities of fly ash as responsive additive in magneto-rheology control of cementitious materials. Construction and Building Materials, 2021, 296, 123656.	3.2	19
29	Rheology of alkali-activated materials: A review. Cement and Concrete Composites, 2021, 121, 104061.	4.6	106
30	Enhanced carbonation reactivity of wollastonite by rapid cooling process: Towards an ultra-low calcium CO2 sequestration binder. Construction and Building Materials, 2021, 299, 124336.	3.2	18
31	Thixotropic structural build-up of cement-based materials: A state-of-the-art review. Cement and Concrete Composites, 2021, 122, 104152.	4.6	76
32	Relationship between the composition and hydration-microstructure-mechanical properties of cement-metakaolin-limestone ternary system. Construction and Building Materials, 2021, 302, 124175.	3.2	10
33	Influence of pumping on the resistivity evolution of high-strength concrete and its relation to the rheology. Construction and Building Materials, 2021, 302, 124095.	3.2	10
34	Effect of CO2 surface treatment on penetrability and microstructure of cement-fly ash–slag ternary concrete. Cement and Concrete Composites, 2021, 123, 104194.	4.6	34
35	Microstructure of Portland cement paste subjected to different CO2 concentrations and further water curing. Journal of CO2 Utilization, 2021, 53, 101714.	3.3	39
36	How do discharge rate and pipeline length influence the rheological properties of self-consolidating concrete after pumping?. Cement and Concrete Composites, 2021, 124, 104231.	4.6	9

#	Article	IF	CITATIONS
37	Correlation of interlayer properties and rheological behaviors of 3DPC with various printing time intervals. Additive Manufacturing, 2021, 47, 102327.	1.7	5
38	Microstructural and micromechanical characteristics of ultra-high performance concrete with superabsorbent polymer (SAP). Cement and Concrete Research, 2021, 149, 106560.	4.6	47
39	Mixture design methods for ultra-high-performance concrete - a review. Cement and Concrete Composites, 2021, 124, 104242.	4.6	60
40	Research progress on the dynamic compressive properties of ultra-high performance concrete under high strain rates. Cement and Concrete Composites, 2021, 124, 104258.	4.6	50
41	Synthesis, characterization and utilization of zinc oxide/expanded vermiculite composite for bitumen modification. Fuel, 2021, 306, 121731.	3.4	14
42	Effect of molecular structure of maleic anhydride, fumaric acid – Isopentenyl polyoxyethylene ether based polycarboxylate superplasticizer on its properties in cement pastes. Construction and Building Materials, 2021, 308, 125143.	3.2	9
43	A novel warm-mix additive for SBR modified asphalt binder: Effects of Sasobit/epoxidized soybean oil compound on binder rheological and long-term aging performance. Journal of Cleaner Production, 2021, 326, 129405.	4.6	13
44	Flow behavior of cementitious-like suspension with nano-Fe3O4 particles under external magnetic field. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	1.3	7
45	Comparative study of PCE superplasticizers with different anchoring groups in low water-to-binder ratio cementitious material. Construction and Building Materials, 2021, 312, 125344.	3.2	10
46	Effects of superabsorbent polymer on interfacial transition zone and mechanical properties of ultra-high performance concrete. Construction and Building Materials, 2020, 231, 117142.	3.2	50
47	Influence of the structures of polycarboxylate superplasticizer on its performance in cement-based materials-A review. Construction and Building Materials, 2020, 233, 117257.	3.2	115
48	Rheological Properties of Cement Paste with Nano-Fe3O4 under Magnetic Field: Flow Curve and Nanoparticle Agglomeration. Materials, 2020, 13, 5164.	1.3	12
49	Expansion behavior and microstructure change of alkali-activated slag grouting material in carbonate environment. Construction and Building Materials, 2020, 262, 120593.	3.2	16
50	Mechanical and fracture properties of ultra-high performance geopolymer concrete: Effects of steel fiber and silica fume. Cement and Concrete Composites, 2020, 112, 103665.	4.6	101
51	A review on durability of fiber reinforced polymer (FRP) bars reinforced seawater sea sand concrete. Construction and Building Materials, 2020, 256, 119484.	3.2	211
52	Development of ultra-high performance geopolymer concrete (UHPGC): Influence of steel fiber on mechanical properties. Cement and Concrete Composites, 2020, 112, 103670.	4.6	82
53	Expansion behavior and microstructure change of alkali-activated slag grouting material in sulfate environment. Construction and Building Materials, 2020, 260, 119909.	3.2	18
54	Generation and property analyses of 3D mesoscale models for plain and fiber reinforced concretes. Cement and Concrete Composites, 2020, 114, 103714.	4.6	20

#	Article	IF	CITATIONS
55	Alkali-aggregate reaction in recycled aggregate concrete. Journal of Cleaner Production, 2020, 255, 120238.	4.6	51
56	Durability of ultra-high performance concrete – A review. Construction and Building Materials, 2020, 255, 119296.	3.2	266
57	An overview on the efficiency of different pretreatment techniques for recycled concrete aggregate. Journal of Cleaner Production, 2020, 263, 121264.	4.6	81
58	Effect of superabsorbent polymer characteristics on rheology of ultra-high performance concrete. Cement and Concrete Composites, 2020, 112, 103636.	4.6	43
59	Research progress on polycarboxylate based superplasticizers with tolerance to clays - A review. Construction and Building Materials, 2020, 255, 119386.	3.2	51
60	Chloride binding of alkali-activated slag/fly ash cements. Construction and Building Materials, 2019, 226, 21-31.	3.2	73
61	A feasible method for measuring the buildability of fresh 3D printing mortar. Construction and Building Materials, 2019, 227, 116600.	3.2	93
62	Carbonation induced phase evolution in alkali-activated slag/fly ash cements: The effect of silicate modulus of activators. Construction and Building Materials, 2019, 223, 566-582.	3.2	64
63	Effects of applied voltage on chloride binding and microstructure of cement pastes subjected to chloride solutions. Materials and Structures/Materiaux Et Constructions, 2019, 52, 1.	1.3	3
64	Mitigation techniques for autogenous shrinkage of ultra-high-performance concrete – A review. Composites Part B: Engineering, 2019, 178, 107456.	5.9	159
65	Numerical and analytical modeling of fiber-matrix bond behaviors of high performance cement composite. Cement and Concrete Research, 2019, 125, 105892.	4.6	30
66	Time-dependent rheological behavior of cementitious paste under continuous shear mixing. Construction and Building Materials, 2019, 226, 591-600.	3.2	50
67	A review on mixture design methods for geopolymer concrete. Composites Part B: Engineering, 2019, 178, 107490.	5.9	164
68	Autogenous and drying shrinkage of alkaliâ€activated slag mortars. Journal of the American Ceramic Society, 2019, 102, 4963-4975.	1.9	60
69	Effects of rotational shearing on rheological behavior of fresh mortar with short glass fiber. Construction and Building Materials, 2019, 203, 314-321.	3.2	29
70	Changes in rheology and mechanical properties of ultra-high performance concrete with silica fume content. Cement and Concrete Research, 2019, 123, 105786.	4.6	150
71	A review on the use of LWA as an internal curing agent of high performance cement-based materials. Construction and Building Materials, 2019, 218, 385-393.	3.2	89
72	Effect of carbonated coarse recycled concrete aggregate on the properties and microstructure of recycled concrete. Journal of Cleaner Production, 2019, 233, 421-428.	4.6	167

#	Article	IF	CITATIONS
73	Investigation of mechanical properties and shrinkage of ultra-high performance concrete: Influence of steel fiber content and shape. Composites Part B: Engineering, 2019, 174, 107021.	5.9	217
74	Recent progress in low-carbon binders. Cement and Concrete Research, 2019, 122, 227-250.	4.6	391
75	Effects of superabsorbent polymer on shrinkage properties of ultra-high strength concrete under drying condition. Construction and Building Materials, 2019, 215, 799-811.	3.2	58
76	Impact of different climates on the resistance of concrete to natural carbonation. Construction and Building Materials, 2019, 216, 450-467.	3.2	29
77	A critical review of waste glass powder – Multiple roles of utilization in cement-based materials and construction products. Journal of Environmental Management, 2019, 242, 440-449.	3.8	162
78	Understanding the roles of activators towards setting and hardening control of alkali-activated slag cement. Composites Part B: Engineering, 2019, 171, 34-45.	5.9	116
79	Effects of pretreated fine lightweight aggregate on shrinkage and pore structure of ultra-high strength concrete. Construction and Building Materials, 2019, 204, 276-287.	3.2	84
80	A quantitative study on physical and chemical effects of limestone powder on properties of cement pastes. Construction and Building Materials, 2019, 204, 58-69.	3.2	39
81	An overview on the reuse of waste glasses in alkali-activated materials. Resources, Conservation and Recycling, 2019, 144, 297-309.	5.3	145
82	Rheological performance investigation and sustainability evaluation of asphalt binder with thermochromic powders under solar radiation. Solar Energy Materials and Solar Cells, 2019, 191, 175-182.	3.0	40
83	Effect of water absorption of SAP on the rheological properties of cement-based materials with ultra-low w/b ratio. Construction and Building Materials, 2019, 195, 66-74.	3.2	56
84	Shrinkage and strength development of UHSC incorporating a hybrid system of SAP and SRA. Cement and Concrete Composites, 2019, 97, 175-189.	4.6	79
85	Mixture design of concrete using simplex centroid design method. Cement and Concrete Composites, 2018, 89, 76-88.	4.6	85
86	Design of high performance concrete with multiple performance requirements for #2 Dongting Lake Bridge. Construction and Building Materials, 2018, 165, 825-832.	3.2	14
87	Evaluation of aging behaviors of asphalt binders through different rheological indices. Fuel, 2018, 221, 78-88.	3.4	299
88	Effect of inorganic surface treatment on surface hardness and carbonation of cement-based materials. Cement and Concrete Composites, 2018, 90, 218-224.	4.6	27
89	Influences of chloride immersion on zeta potential and chloride concentration index of cement-based materials. Cement and Concrete Research, 2018, 106, 49-56.	4.6	25
90	Alkali-silica reaction in waterglass-activated slag mortars incorporating fly ash and metakaolin. Cement and Concrete Research, 2018, 108, 10-19.	4.6	103

#	Article	IF	CITATIONS
91	How do fiber shape and matrix composition affect fiber pullout behavior and flexural properties of UHPC?. Cement and Concrete Composites, 2018, 90, 193-201.	4.6	172
92	Durability of recycled aggregate concrete – A review. Cement and Concrete Composites, 2018, 89, 251-259.	4.6	484
93	Physical, rheological and chemical characterization of aging behaviors of thermochromic asphalt binder. Fuel, 2018, 211, 850-858.	3.4	157
94	Effect of mineral admixtures on the structural build-up of cement paste. Construction and Building Materials, 2018, 160, 117-126.	3.2	103
95	Multi-scale investigation of microstructure, fiber pullout behavior, and mechanical properties of ultra-high performance concrete with nano-CaCO3 particles. Cement and Concrete Composites, 2018, 86, 255-265.	4.6	135
96	A review on effects of limestone powder on the properties of concrete. Construction and Building Materials, 2018, 192, 153-166.	3.2	174
97	Effect of SCM and nano-particles on static and dynamic mechanical properties of UHPC. Construction and Building Materials, 2018, 182, 118-125.	3.2	64
98	Effects of carbonated hardened cement paste powder on hydration and microstructure of Portland cement. Construction and Building Materials, 2018, 186, 699-708.	3.2	175
99	Effects of alkali dosage and silicate modulus on alkali-silica reaction in alkali-activated slag mortars. Cement and Concrete Research, 2018, 111, 104-115.	4.6	79
100	Effect of alkali dosage and silicate modulus on carbonation of alkali-activated slag mortars. Cement and Concrete Research, 2018, 113, 55-64.	4.6	153
101	A mixture proportioning method for the development of performance-based alkali-activated slag-based concrete. Cement and Concrete Composites, 2018, 93, 163-174.	4.6	119
102	Carbon dioxide sequestration by alkali-activated materials. , 2018, , 279-298.		3
103	Strength and microstructure of CO2 cured low-calcium clinker. Construction and Building Materials, 2018, 188, 417-423.	3.2	65
104	The role of seawater in interaction of slag and silica fume with cement in low water-to-binder ratio pastes at the early age of hydration. Construction and Building Materials, 2018, 185, 508-518.	3.2	89
105	Influences of shear-mixing rate and fly ash on rheological behavior of cement pastes under continuous mixing. Construction and Building Materials, 2018, 188, 170-177.	3.2	53
106	Effect of Limestone Powder Content on the Early-Age Properties of CO2-Cured Concrete. Journal of Materials in Civil Engineering, 2018, 30, .	1.3	22
107	A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Construction and Building Materials, 2018, 181, 659-672.	3.2	266
108	Comparative study on flexural properties of ultra-high performance concrete with supplementary cementitious materials under different curing regimes. Construction and Building Materials, 2017, 136, 307-313.	3.2	137

#	Article	IF	CITATIONS
109	Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements. Cement and Concrete Composites, 2017, 79, 148-157.	4.6	296
110	Effect of alkali dosage on alkali-silica reaction in sodium hydroxide activated slag mortars. Construction and Building Materials, 2017, 143, 16-23.	3.2	66
111	An overview on the effect of internal curing on shrinkage of high performance cement-based materials. Construction and Building Materials, 2017, 146, 702-712.	3.2	175
112	Effect of limestone powder on the water stability of magnesium phosphate cement-based materials. Construction and Building Materials, 2017, 148, 590-598.	3.2	54
113	Autogenous shrinkage of high performance concrete: A review. Construction and Building Materials, 2017, 149, 62-75.	3.2	266
114	Effect of curing regime on water resistance of magnesium–potassium phosphate cement. Construction and Building Materials, 2017, 151, 43-51.	3.2	82
115	On the measurement of evolution of structural build-up of cement paste with time by static yield stress test vs. small amplitude oscillatory shear test. Cement and Concrete Research, 2017, 99, 183-189.	4.6	174
116	Drying shrinkage and cracking resistance of concrete made with ternary cementitious components. Construction and Building Materials, 2017, 149, 406-415.	3.2	82
117	Synergetic effect of multi-dimensional nanomaterials for anti-aging properties of SBS modified bitumen. Construction and Building Materials, 2017, 144, 423-431.	3.2	45
118	Effect of nano-SiO2 particles and curing time on development of fiber-matrix bond properties and microstructure of ultra-high strength concrete. Cement and Concrete Research, 2017, 95, 247-256.	4.6	190
119	Effects of SAP on the properties and pore structure of high performance cement-based materials. Construction and Building Materials, 2017, 131, 476-484.	3.2	126
120	Effects of CO2 surface treatment on strength and permeability of one-day-aged cement mortar. Construction and Building Materials, 2017, 154, 1087-1095.	3.2	69
121	Early age shrinkage and heat of hydration of cement-fly ash-slag ternary blends. Construction and Building Materials, 2017, 153, 857-865.	3.2	84
122	Effect of constituents on rheological properties of fresh concrete-A review. Cement and Concrete Composites, 2017, 83, 146-159.	4.6	314
123	Durability of alkali-activated materials in aggressive environments: A review on recent studies. Construction and Building Materials, 2017, 152, 598-613.	3.2	225
124	Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation. Cement and Concrete Research, 2017, 100, 214-226.	4.6	246
125	Composition design and performance of alkali-activated cements. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	104
126	Effects of different nanomaterials on hardening and performance of ultra-high strength concrete (UHSC). Cement and Concrete Composites, 2016, 70, 24-34.	4.6	190

#	Article	IF	CITATIONS
127	Interactions between inorganic surface treatment agents and matrix of Portland cement-based materials. Construction and Building Materials, 2016, 113, 721-731.	3.2	34
128	Effects of triisopropanol amine, sodium chloride and limestone on the compressive strength and hydration of Portland cement. Construction and Building Materials, 2016, 125, 210-218.	3.2	23
129	Uniaxial Compression Behavior of Ultra-High Performance Concrete with Hybrid Steel Fiber. Journal of Materials in Civil Engineering, 2016, 28, .	1.3	103
130	Effect of further water curing on compressive strength and microstructure of CO2-cured concrete. Cement and Concrete Composites, 2016, 72, 80-88.	4.6	125
131	Effects of limestone powder on CaCO3 precipitation in CO2 cured cement pastes. Cement and Concrete Composites, 2016, 72, 9-16.	4.6	111
132	Influence of silica fume content on microstructure development and bond to steel fiber in ultra-high strength cement-based materials (UHSC). Cement and Concrete Composites, 2016, 71, 97-109.	4.6	256
133	Effects of inorganic surface treatment on water permeability of cement-based materials. Cement and Concrete Composites, 2016, 67, 85-92.	4.6	55
134	Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete. Construction and Building Materials, 2016, 103, 8-14.	3.2	502
135	Factorial Design Method for Designing Ternary Composite Cements to Mitigate ASR Expansion. Journal of Materials in Civil Engineering, 2016, 28, .	1.3	17
136	Influence of Nanolimestone on the Hydration, Mechanical Strength, and Autogenous Shrinkage of Ultrahigh-Performance Concrete. Journal of Materials in Civil Engineering, 2016, 28, .	1.3	96
137	Performance enhancement of recycled concrete aggregate – A review. Journal of Cleaner Production, 2016, 112, 466-472.	4.6	715
138	The hydration and microstructure of ultra high-strength concrete with cement–silica fume–slag binder. Cement and Concrete Composites, 2015, 61, 44-52.	4.6	141
139	A review on ultra high performance concrete: Part I. Raw materials and mixture design. Construction and Building Materials, 2015, 101, 741-751.	3.2	794
140	A review on alkali-aggregate reactions in alkali-activated mortars/concretes made with alkali-reactive aggregates. Materials and Structures/Materiaux Et Constructions, 2015, 48, 621-628.	1.3	84
141	Comparison of alkali–silica reactions in alkali-activated slag and Portland cement mortars. Materials and Structures/Materiaux Et Constructions, 2015, 48, 743-751.	1.3	59
142	Advances in understanding alkali-activated materials. Cement and Concrete Research, 2015, 78, 110-125.	4.6	954
143	Effects of Deicing Salts on the Scaling Resistance of Concrete. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	43
144	Performance Enhancement of Recycled Concrete Aggregates through Carbonation. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	237

#	Article	IF	CITATIONS
145	A review on ultra high performance concrete: Part II. Hydration, microstructure and properties. Construction and Building Materials, 2015, 96, 368-377.	3.2	554
146	Influence of carbonated recycled concrete aggregate on properties of cement mortar. Construction and Building Materials, 2015, 98, 1-7.	3.2	217
147	Influence of surface modification on physical and ultraviolet aging resistance of bitumen containing inorganic nanoparticles. Construction and Building Materials, 2015, 98, 735-740.	3.2	102
148	Investigation of Approaches for Improving Interfacial Transition Zone-Related Freezing-and-Thawing Resistance in Concrete Pavements. ACI Materials Journal, 2015, 112, .	0.3	12
149	Research Progresses in Magnesium Phosphate Cement–Based Materials. Journal of Materials in Civil Engineering, 2014, 26, .	1.3	99
150	Effect of waterglass on water stability of potassium magnesium phosphate cement paste. Cement and Concrete Composites, 2014, 53, 83-87.	4.6	98
151	Chloride binding isotherm from migration and diffusion tests. Journal Wuhan University of Technology, Materials Science Edition, 2013, 28, 548-556.	0.4	10
152	Factors affecting kinetics of CO ₂ curing of concrete. Journal of Sustainable Cement-Based Materials, 2012, 1, 24-33.	1.7	49
153	Weathering properties of CO2-cured concrete blocks. Resources, Conservation and Recycling, 2012, 65, 11-17.	5.3	63
154	Effect of pre-conditioning on CO2 curing of lightweight concrete blocks mixtures. Construction and Building Materials, 2012, 26, 257-267.	3.2	150
155	Numerical Model for Chloride Penetration into Saturated Concrete. Journal of Materials in Civil Engineering, 2011, 23, 305-311.	1.3	34
156	Calculation of chloride concentration at color change boundary of AgNO3 colorimetric measurement. Cement and Concrete Research, 2011, 41, 1095-1103.	4.6	29
157	New cements for the 21st century: The pursuit of an alternative to Portland cement. Cement and Concrete Research, 2011, 41, 750-763.	4.6	1,106
158	Chloride binding of cement-based materials subjected to external chloride environment – A review. Construction and Building Materials, 2009, 23, 1-13.	3.2	586
159	Studies on some factors affecting CO2 curing of lightweight concrete products. Resources, Conservation and Recycling, 2008, 52, 1087-1092.	5.3	99
160	Effect of hydroxyl ions on chloride penetration depth measurement using the colorimetric method. Cement and Concrete Research, 2008, 38, 1177-1180.	4.6	28
161	A review on the use of waste glasses in the production of cement and concrete. Resources, Conservation and Recycling, 2007, 52, 234-247.	5.3	383
162	Characteristics and pozzolanic reactivity of glass powders. Cement and Concrete Research, 2005, 35, 987-993.	4.6	462

#	Article	IF	CITATIONS
163	Effect of mixing proportions of concrete on its electrical conductivity and the rapid chloride permeability test (ASTM C1202 or ASSHTO T277) results. Cement and Concrete Research, 2004, 34, 537-545.	4.6	231
164	Cementitious properties of ladle slag fines under autoclave curing conditions. Cement and Concrete Research, 2003, 33, 1851-1856.	4.6	141
165	Characteristics and cementitious properties of ladle slag fines from steel production. Cement and Concrete Research, 2002, 32, 459-462.	4.6	256
166	Acid corrosion resistance of different cementing materials. Cement and Concrete Research, 2000, 30, 803-808.	4.6	226
167	Strength, pore structure and permeability of alkali-activated slag mortars. Cement and Concrete Research, 1996, 26, 1789-1799.	4.6	291
168	A calorimetric study of early hydration of alkali-slag cements. Cement and Concrete Research, 1995, 25, 1333-1346.	4.6	326