Liu Ping

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10265396/publications.pdf

Version: 2024-02-01

		759233	580821
31	627	12	25
papers	citations	h-index	g-index
31 all docs	31 docs citations	31 times ranked	758 citing authors

#	Article	IF	CITATIONS
1	Relation of Catalytic Performance to the Aluminum Siting of Acidic Zeolites in the Conversion of Methanol to Olefins, Viewed via a Comparison between ZSM-5 and ZSM-11. ACS Catalysis, 2018, 8, 5485-5505.	11.2	148
2	Influence of template on Si distribution of SAPO-11 and their performance for n-paraffin isomerization. Microporous and Mesoporous Materials, 2008, 114, 365-372.	4.4	68
3	Catalytic conversion of methanol to aromatics over nano-sized HZSM-5 zeolite modified by ZnSiF ₆ ·6H ₂ O. Catalysis Science and Technology, 2017, 7, 1776-1791.	4.1	54
4	Thermodynamically Favorable Synthesis of 2â€Oxazolidinones through Silverâ€Catalyzed Reaction of Propargylic Alcohols, CO _{2,} and 2â€Aminoethanols. ChemSusChem, 2016, 9, 2054-2058.	6.8	48
5	Synthesis, characterization and catalytic properties of SAPO-11 with high silicon dispersion. Catalysis Communications, 2008, 9, 1804-1809.	3.3	38
6	Catalytic Conversion of Carbon Dioxide through C-N Bond Formation. Molecules, 2019, 24, 182.	3.8	32
7	Catalytic Conversion of CO ₂ to Cyclic Carbonates through Multifunctional Zincâ∈Modified ZSMâ€5 Zeolite. Chinese Journal of Chemistry, 2018, 36, 187-193.	4.9	30
8	Cascade Strategy for Atmospheric Pressure CO ₂ Fixation to Cyclic Carbonates via Silver Sulfadiazine and Et ₄ NBr Synergistic Catalysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 3378-3388.	6.7	29
9	Upgrading CO ₂ by Incorporation into Urethanes through Silverâ€Catalyzed Oneâ€Pot Stepwise Amidation Reaction. Chinese Journal of Chemistry, 2018, 36, 147-152.	4.9	28
10	Facile fabrication of ZSM-5 zeolite hollow spheres for catalytic conversion of methanol to aromatics. Catalysis Science and Technology, 2017, 7, 560-564.	4.1	25
11	Crystallization Mechanism of Pure-Silica ZSM-22 in the Seed-Assistant System. Crystal Growth and Design, 2018, 18, 6591-6601.	3.0	19
12	Catalytic oxidation of low concentration formaldehyde over Pt/TiO2 catalyst. Chinese Journal of Chemical Engineering, 2021, 29, 190-195.	3.5	15
13	The Role of Active Sites Location in Partial Oxidation of Methane to Syngas for MCM-41 Supported Ni Nanoparticles. Catalysts, 2019, 9, 606.	3.5	13
14	CB ₃ E ₂ ^q (<i>q</i> = ±1): a family of "hyparene―analogues with a planar pentacoordinate carbon. Physical Chemistry Chemical Physics, 2018, 20, 12642-12649.	2.8	11
15	Catalytic performance of $Pd < sub > n < sub > (n < i> = 1, 2, 3, 4 and 6) clusters supported on TiO < sub > 2-V < sub > for the formation of dimethyl oxalate via < i> the CO catalytic coupling reaction: a theoretical study. Physical Chemistry Chemical Physics, 2020, 22, 4549-4560.$	2.8	11
16	Ag(I)/(C ₂ H ₅) ₄ NCl Cooperation Catalysis for Fixing CO ₂ or Its Derivatives into βâ€Oxopropylcarbamates. ChemistrySelect, 2018, 3, 6897-6901.	1.5	10
17	Carbon Deposition Behavior of Ni Catalyst Prepared by Combustion Method in Slurry Methanation Reaction. Catalysts, 2019, 9, 570.	3.5	10
18	Incorporation of CO ₂ into carbonates through carboxylation/hydration reaction., 2018, 8, 803-838.		9

#	Article	IF	CITATIONS
19	Creation of CuO _x /ZSM-5 zeolite complex: healing defect sites and boosting acidic stability and catalytic activity. Catalysis Science and Technology, 2020, 10, 4981-4989.	4.1	8
20	Relationship between Acidity and Activity on Propane Conversion over Metal-Modified HZSM-5 Catalysts. Catalysts, 2021, 11, 1138.	3.5	7
21	Effect of Preparation Method on the Catalytic Performance of HZSM-5 Zeolite Catalysts in the MTH Reaction. Materials, 2022, 15, 2206.	2.9	5
22	Chemical Adsorption Strategy for DMC-MeOH Mixture Separation. Molecules, 2021, 26, 1735.	3.8	3
23	Oxygen Atom Function: The Case of Methane Oxidation Mechanism to Synthesis Gas over a Pd Cluster. Catalysts, 2019, 9, 666.	3.5	2
24	The effect of substituents and polymer media on photochromism kinetics of indolinospironaphthoxazine. Science in China Series B: Chemistry, 1999, 42, 411-418.	0.8	1
25	First-principle study on polarizability and hyperpolarizability of a transition metal cluster, [Mo2S3(C6H11)3(CO)6]·N(C2H3)4. Journal of Computational Methods in Sciences and Engineering, 2004, 4, 451-459.	0.2	1
26	A Density Functional Theory Study on Electronic Structure and Secondâ€order Nonlinear Optical Properties of Some Pushâ€Pull Molecules. Chinese Journal of Chemistry, 2003, 21, 377-381.	4.9	1
27	The dependance of high catalytic performance on the tunable oxygen vacancy in the CZ _x S/Znâ€HZSMâ€5 bifunctional catalyst for alkylation of benzene and syngas. Applied Organometallic Chemistry, 0, , .	3.5	1
28	Inside Cover: Upgrading CO2 by Incorporation into Urethanes through Silver-Catalyzed One-Pot Stepwise Amidation Reaction (Chin. J. Chem. 2/2018). Chinese Journal of Chemistry, 2018, 36, 86-86.	4.9	0
29	Understanding the Role of Surface Oxygen in Hg Removal on Unâ€Doped and Mn/Feâ€Doped CeO 2 (111). Journal of Computational Chemistry, 2019, 40, 2611-2621.	3.3	0
30	Effect of hardening and sealing on color of chemically colored stainless steel. Scientific Reports, 2020, 10, 13561.	3.3	0
31	Identification of the phospho-dependent substrates of Cullin-RING ubiquitin ligases using MS-based proteomics and phosphoproteomics approach. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-6-5.	0.0	0