Kan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10265203/publications.pdf

Version: 2024-02-01

759233 713466 26 549 12 21 citations h-index g-index papers 27 27 27 699 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Effect of Preparation Method on the Catalytic Performance of HZSM-5 Zeolite Catalysts in the MTH Reaction. Materials, 2022, 15, 2206.	2.9	5
2	Tandem catalysts for the conversion of methanol to aromatics with excellent selectivity and stability. New Journal of Chemistry, 2021, 45, 7999-8007.	2.8	6
3	Chemical Adsorption Strategy for DMC-MeOH Mixture Separation. Molecules, 2021, 26, 1735.	3.8	3
4	Relationship between Acidity and Activity on Propane Conversion over Metal-Modified HZSM-5 Catalysts. Catalysts, 2021, 11, 1138.	3.5	7
5	Synthesis, characterization, and catalytic application of hierarchical nano-ZSM-5 zeolite. RSC Advances, 2020, 10, 29618-29626.	3.6	13
6	Effect of hardening and sealing on color of chemically colored stainless steel. Scientific Reports, 2020, 10, 13561.	3.3	0
7	Theoretical research on a coke-resistant catalyst for the partial oxidation of methane: Pt/Cu single-atom alloys. New Journal of Chemistry, 2020, 44, 3922-3929.	2.8	22
8	Carbon Deposition Behavior of Ni Catalyst Prepared by Combustion Method in Slurry Methanation Reaction. Catalysts, 2019, 9, 570.	3.5	10
9	The Role of Active Sites Location in Partial Oxidation of Methane to Syngas for MCM-41 Supported Ni Nanoparticles. Catalysts, 2019, 9, 606.	3.5	13
10	Oxygen Atom Function: The Case of Methane Oxidation Mechanism to Synthesis Gas over a Pd Cluster. Catalysts, 2019, 9, 666.	3.5	2
11	Cascade Strategy for Atmospheric Pressure CO ₂ Fixation to Cyclic Carbonates via Silver Sulfadiazine and Et ₄ NBr Synergistic Catalysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 3378-3388.	6.7	29
12	Catalytic Conversion of Carbon Dioxide through C-N Bond Formation. Molecules, 2019, 24, 182.	3.8	32
13	Fabrication of Highly Stable SiO2 Encapsulated Multiple CuFe Nanoparticles for Higher Alcohols Synthesis via CO Hydrogenation. Catalysis Letters, 2018, 148, 1080-1092.	2.6	13
14	Relation of Catalytic Performance to the Aluminum Siting of Acidic Zeolites in the Conversion of Methanol to Olefins, Viewed via a Comparison between ZSM-5 and ZSM-11. ACS Catalysis, 2018, 8, 5485-5505.	11.2	148
15	Inside Cover: Upgrading CO2 by Incorporation into Urethanes through Silver-Catalyzed One-Pot Stepwise Amidation Reaction (Chin. J. Chem. 2/2018). Chinese Journal of Chemistry, 2018, 36, 86-86.	4.9	0
16	Catalytic Conversion of CO ₂ to Cyclic Carbonates through Multifunctional Zincâ€Modified ZSMâ€5 Zeolite. Chinese Journal of Chemistry, 2018, 36, 187-193.	4.9	30
17	Upgrading CO ₂ by Incorporation into Urethanes through Silverâ€Catalyzed Oneâ€Pot Stepwise Amidation Reaction. Chinese Journal of Chemistry, 2018, 36, 147-152.	4.9	28
18	Incorporation of CO ₂ into carbonates through carboxylation/hydration reaction., 2018, 8, 803-838.		9

#	Article	IF	CITATIONS
19	Ag(I)/(C ₂ H ₅) ₄ NCl Cooperation Catalysis for Fixing CO ₂ or Its Derivatives into βâ€Oxopropylcarbamates. ChemistrySelect, 2018, 3, 6897-6901.	1.5	10
20	Catalytic conversion of methanol to aromatics over nano-sized HZSM-5 zeolite modified by ZnSiF ₆ ·6H ₂ O. Catalysis Science and Technology, 2017, 7, 1776-1791.	4.1	54
21	Facile fabrication of ZSM-5 zeolite hollow spheres for catalytic conversion of methanol to aromatics. Catalysis Science and Technology, 2017, 7, 560-564.	4.1	25
22	Thermodynamically Favorable Synthesis of 2â€Oxazolidinones through Silverâ€Catalyzed Reaction of Propargylic Alcohols, CO _{2,} and 2â€Aminoethanols. ChemSusChem, 2016, 9, 2054-2058.	6.8	48
23	Effects of surface states over core-shell Ni@SiO2 catalysts on catalytic partial oxidation of methane to synthesis gas. Journal of Energy Chemistry, 2015, 24, 45-53.	12.9	31
24	Carbon dispersed iron-manganese catalyst for light olefin synthesis from CO hydrogenation. Korean Journal of Chemical Engineering, 2009, 26, 890-894.	2.7	10
25	Redispersion of Pt nanoparticles encapsulated within ZSM-5 in oxygen and catalytic properties in partial oxidation of methane. Journal of Porous Materials, 0, , 1.	2.6	0
26	The dependance of high catalytic performance on the tunable oxygen vacancy in the CZ _x S/Znâ€HZSMâ€5 bifunctional catalyst for alkylation of benzene and syngas. Applied Organometallic Chemistry, 0, , .	3.5	1