
Tamer Sallam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1026481/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Mitochondrial-Derived Peptide MOTS-c Promotes Metabolic Homeostasis and Reduces Obesity and Insulin Resistance. Cell Metabolism, 2015, 21, 443-454.	16.2	464
2	Long Noncoding RNA Discovery in Cardiovascular Disease. Circulation Research, 2018, 122, 155-166.	4.5	224
3	Genetic Architecture of Insulin Resistance in the Mouse. Cell Metabolism, 2015, 21, 334-347.	16.2	196
4	Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis. Nature, 2016, 534, 124-128.	27.8	175
5	Transcriptional regulation of macrophage cholesterol efflux and atherogenesis by a long noncoding RNA. Nature Medicine, 2018, 24, 304-312.	30.7	171
6	IL-10 Signaling Remodels Adipose Chromatin Architecture to Limit Thermogenesis and Energy Expenditure. Cell, 2018, 172, 218-233.e17.	28.9	142
7	Crosstalk between epitranscriptomic and epigenetic mechanisms in gene regulation. Trends in Genetics, 2022, 38, 182-193.	6.7	108
8	Review of Side-Effect Profile of Combination Ezetimibe and Statin Therapy in Randomized Clinical Trials. American Journal of Cardiology, 2008, 101, 1606-1613.	1.6	81
9	Long Noncoding RNAs in Atherosclerosis. Journal of the American College of Cardiology, 2018, 72, 2380-2390.	2.8	79
10	Long Noncoding RNA Facilitated Gene Therapy Reduces Atherosclerosis in a Murine Model of Familial Hypercholesterolemia. Circulation, 2017, 136, 776-778.	1.6	48
11	Inhibition of cholesterol biosynthesis through RNF145-dependent ubiquitination of SCAP. ELife, 2017, 6,	6.0	39
12	RNA-binding protein PSPC1 promotes the differentiation-dependent nuclear export of adipocyte RNAs. Journal of Clinical Investigation, 2017, 127, 987-1004.	8.2	33
13	Regulatory circuits controlling vascular cell calcification. Cellular and Molecular Life Sciences, 2013, 70, 3187-3197.	5.4	30
14	Liver X Receptor Nuclear Receptors Are Transcriptional Regulators of Dendritic Cell Chemotaxis. Molecular and Cellular Biology, 2018, 38, .	2.3	30
15	Facilitated patent haemostasis after transradial catheterisation to reduce radial artery occlusion. EuroIntervention, 2015, 11, 765-771.	3.2	30
16	MicroRNA-144 Silencing Protects Against Atherosclerosis in Male, but Not Female Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 412-425.	2.4	27
17	Transcriptional regulation of N6-methyladenosine orchestrates sex-dimorphic metabolic traits. Nature Metabolism, 2021, 3, 940-953.	11.9	24
18	DDX17 is an essential mediator of sterile NLRC4 inflammasome activation by retrotransposon RNAs. Science Immunology, 2021, 6, eabi4493.	11.9	24

TAMER SALLAM

#	Article	IF	CITATIONS
19	The macrophage LBP gene is an LXR target that promotes macrophage survival and atherosclerosis. Journal of Lipid Research, 2014, 55, 1120-1130.	4.2	21
20	Usefulness of N-terminal Pro–brain Natriuretic Peptide and Myocardial Perfusion in Asymptomatic Adults (fromÂthe Multi-Ethnic Study of Atherosclerosis). American Journal of Cardiology, 2015, 115, 1341-1345.	1.6	19
21	PON2 Deficiency Leads to Increased Susceptibility to Diet-Induced Obesity. Antioxidants, 2019, 8, 19.	5.1	19
22	Predictors of Cardiovascular Risk in Women. Women's Health, 2013, 9, 491-498.	1.5	16
23	Noggin depletion in adipocytes promotes obesity in mice. Molecular Metabolism, 2019, 25, 50-63.	6.5	14
24	Changes in lipid composition associated with electronic cigarette use. Journal of Translational Medicine, 2020, 18, 379.	4.4	13
25	Collaborative interactions of heterogenous ribonucleoproteins contribute to transcriptional regulation of sterol metabolism in mice. Nature Communications, 2020, 11, 984.	12.8	10
26	Coil embolization of left coronary artery pseudoaneurysms arising as a complication of percutaneous coronary intervention. Catheterization and Cardiovascular Interventions, 2012, 80, 1228-1231.	1.7	6
27	Immune Biomarkers in the Prediction of Future Myocardial Infarctions in People With Human Immunodeficiency Virus. Clinical Infectious Diseases, 2020, 70, 1764-1767.	5.8	6
28	Where in the (IncRNA) World Is <i>CARMN</i> ?. Circulation Research, 2021, 128, 1276-1278.	4.5	3
29	Cardiovascular Outcomes in Systemic Lupus Erythematosus. Journal of the American College of Cardiology, 2021, 77, 1728-1730.	2.8	3
30	Pharmacotherapy in familial hypercholesterolemia - Current state and emerging paradigms. Trends in Cardiovascular Medicine, 2023, 33, 170-179.	4.9	2
31	Modification of Ischemia-Reperfusion-Induced Injury by Cardioprotective Interventions. , 0, , 18-32.		1
32	Rebuttal. Catheterization and Cardiovascular Interventions, 2013, 82, 427-427.	1.7	0
33	A Wrong Turn in Embryologic Development. Journal of the American College of Cardiology, 2014, 63, e29.	2.8	0
34	MY APPROACH to the Patient With Memory Loss Who Needs a Statin. Trends in Cardiovascular Medicine, 2017, 27, 158-159.	4.9	0
35	Lnc-ing microRNA activity to atheroprotection. Nature Metabolism, 2019, 1, 10-11.	11.9	0
36	Abstract 634: Silencing miR144 Enhances Regression and Attenutates Progression of Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	2.4	0

#	Article	IF	CITATIONS
37	ZFP36L1 is a postâ€ŧranscriptional regulator of lipid metabolism FASEB Journal, 2018, 32, 842.6.	0.5	Ο
38	The promise of MicroRNAs in myocardial infarction: Mirage or reality?. Trends in Cardiovascular Medicine, 2022, , .	4.9	0
39	Abstract 19546: Silencing miR-144 Enhances Regression and Reduces Progression of Atheroscleoris. Circulation, 2015, 132, .	1.6	Ο